Previsão da arrecadação de receitas federais: aplicações de modelos de séries temporais para o estado de São Paulo

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Campos, Celso Vilela Chaves
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/96/96131/tde-12052009-150243/
Resumo: O objetivo principal do presente trabalho é oferecer métodos alternativos de previsão da arrecadação tributária federal, baseados em metodologias de séries temporais, inclusive com a utilização de variáveis explicativas, que reflitam a influência do cenário macroeconômico na arrecadação tributária, com o intuito de melhorar a acurácia da previsão da arrecadação. Para tanto, foram aplicadas as metodologias de modelos dinâmicos univariados, multivariados, quais sejam, Função de Transferência, Auto-regressão Vetorial (VAR), VAR com correção de erro (VEC), Equações Simultâneas, e de modelos Estruturais. O trabalho tem abrangência regional e limita-se à análise de três séries mensais da arrecadação, relativas ao Imposto de Importação, Imposto Sobre a Renda das Pessoas Jurídicas e Contribuição para o Financiamento da Seguridade Social - Cofins, no âmbito da jurisdição do estado de São Paulo, no período de 2000 a 2007. Os resultados das previsões dos modelos acima citados são comparados entre si, com a modelagem ARIMA e com o método dos indicadores, atualmente utilizado pela Secretaria da Receita Federal do Brasil (RFB) para previsão anual da arrecadação tributária, por meio da raiz do erro médio quadrático de previsão (RMSE). A redução média do RMSE foi de 42% em relação ao erro cometido pelo método dos indicadores e de 35% em relação à modelagem ARIMA, além da drástica redução do erro anual de previsão. A utilização de metodologias de séries temporais para a previsão da arrecadação de receitas federais mostrou ser uma alternativa viável ao método dos indicadores, contribuindo para previsões mais precisas, tornando-se ferramenta segura de apoio para a tomada de decisões dos gestores.
id USP_a2d431bbb4f6364245a606bf41c60bc2
oai_identifier_str oai:teses.usp.br:tde-12052009-150243
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Previsão da arrecadação de receitas federais: aplicações de modelos de séries temporais para o estado de São PauloFederal revenue collection forecast: application of time series models at the state of Sao PauloARIMAARIMAArrecadaçãoCollectionForecastingModelo EstruturalModelos dinâmicos univariados e multivariadosPrevisãoSéries de tempoStructural modelsTime seriesUnivariate and multivariate dynamic modelsO objetivo principal do presente trabalho é oferecer métodos alternativos de previsão da arrecadação tributária federal, baseados em metodologias de séries temporais, inclusive com a utilização de variáveis explicativas, que reflitam a influência do cenário macroeconômico na arrecadação tributária, com o intuito de melhorar a acurácia da previsão da arrecadação. Para tanto, foram aplicadas as metodologias de modelos dinâmicos univariados, multivariados, quais sejam, Função de Transferência, Auto-regressão Vetorial (VAR), VAR com correção de erro (VEC), Equações Simultâneas, e de modelos Estruturais. O trabalho tem abrangência regional e limita-se à análise de três séries mensais da arrecadação, relativas ao Imposto de Importação, Imposto Sobre a Renda das Pessoas Jurídicas e Contribuição para o Financiamento da Seguridade Social - Cofins, no âmbito da jurisdição do estado de São Paulo, no período de 2000 a 2007. Os resultados das previsões dos modelos acima citados são comparados entre si, com a modelagem ARIMA e com o método dos indicadores, atualmente utilizado pela Secretaria da Receita Federal do Brasil (RFB) para previsão anual da arrecadação tributária, por meio da raiz do erro médio quadrático de previsão (RMSE). A redução média do RMSE foi de 42% em relação ao erro cometido pelo método dos indicadores e de 35% em relação à modelagem ARIMA, além da drástica redução do erro anual de previsão. A utilização de metodologias de séries temporais para a previsão da arrecadação de receitas federais mostrou ser uma alternativa viável ao método dos indicadores, contribuindo para previsões mais precisas, tornando-se ferramenta segura de apoio para a tomada de decisões dos gestores.The main objective of this work is to offer alternative methods for federal tax revenue forecasting, based on methodologies of time series, inclusively with the use of explanatory variables, which reflect the influence of the macroeconomic scenario in the tax collection, for the purpose of improving the accuracy of revenues forecasting. Therefore, there were applied the methodologies of univariate dynamic models, multivariate, namely, Transfer Function, Vector Autoregression (VAR), VAR with error correction (VEC), Simultaneous Equations, and Structural Models. The work has a regional scope and it is limited to the analysis of three series of monthly tax collection of the Import Duty, the Income Tax Law over Legal Entities Revenue and the Contribution for the Social Security Financing Cofins, under the jurisdiction of the state of São Paulo in the period from 2000 to 2007. The results of the forecasts from the models above were compared with each other, with the ARIMA moulding and with the indicators method, currently used by the Secretaria da Receita Federal do Brasil (RFB) to annual foresee of the tax collection, through the root mean square error of approximation (RMSE). The average reduction of RMSE was 42% compared to the error committed by the method of indicators and 35% of the ARIMA model, besides the drastic reduction in the annual forecast error. The use of time-series methodologies to forecast the collection of federal revenues has proved to be a viable alternative to the method of indicators, contributing for more accurate predictions, becoming a safe support tool for the managers decision making process.Biblioteca Digitais de Teses e Dissertações da USPToneto Junior, RudineiCampos, Celso Vilela Chaves2009-03-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/96/96131/tde-12052009-150243/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:59Zoai:teses.usp.br:tde-12052009-150243Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Previsão da arrecadação de receitas federais: aplicações de modelos de séries temporais para o estado de São Paulo
Federal revenue collection forecast: application of time series models at the state of Sao Paulo
title Previsão da arrecadação de receitas federais: aplicações de modelos de séries temporais para o estado de São Paulo
spellingShingle Previsão da arrecadação de receitas federais: aplicações de modelos de séries temporais para o estado de São Paulo
Campos, Celso Vilela Chaves
ARIMA
ARIMA
Arrecadação
Collection
Forecasting
Modelo Estrutural
Modelos dinâmicos univariados e multivariados
Previsão
Séries de tempo
Structural models
Time series
Univariate and multivariate dynamic models
title_short Previsão da arrecadação de receitas federais: aplicações de modelos de séries temporais para o estado de São Paulo
title_full Previsão da arrecadação de receitas federais: aplicações de modelos de séries temporais para o estado de São Paulo
title_fullStr Previsão da arrecadação de receitas federais: aplicações de modelos de séries temporais para o estado de São Paulo
title_full_unstemmed Previsão da arrecadação de receitas federais: aplicações de modelos de séries temporais para o estado de São Paulo
title_sort Previsão da arrecadação de receitas federais: aplicações de modelos de séries temporais para o estado de São Paulo
author Campos, Celso Vilela Chaves
author_facet Campos, Celso Vilela Chaves
author_role author
dc.contributor.none.fl_str_mv Toneto Junior, Rudinei
dc.contributor.author.fl_str_mv Campos, Celso Vilela Chaves
dc.subject.por.fl_str_mv ARIMA
ARIMA
Arrecadação
Collection
Forecasting
Modelo Estrutural
Modelos dinâmicos univariados e multivariados
Previsão
Séries de tempo
Structural models
Time series
Univariate and multivariate dynamic models
topic ARIMA
ARIMA
Arrecadação
Collection
Forecasting
Modelo Estrutural
Modelos dinâmicos univariados e multivariados
Previsão
Séries de tempo
Structural models
Time series
Univariate and multivariate dynamic models
description O objetivo principal do presente trabalho é oferecer métodos alternativos de previsão da arrecadação tributária federal, baseados em metodologias de séries temporais, inclusive com a utilização de variáveis explicativas, que reflitam a influência do cenário macroeconômico na arrecadação tributária, com o intuito de melhorar a acurácia da previsão da arrecadação. Para tanto, foram aplicadas as metodologias de modelos dinâmicos univariados, multivariados, quais sejam, Função de Transferência, Auto-regressão Vetorial (VAR), VAR com correção de erro (VEC), Equações Simultâneas, e de modelos Estruturais. O trabalho tem abrangência regional e limita-se à análise de três séries mensais da arrecadação, relativas ao Imposto de Importação, Imposto Sobre a Renda das Pessoas Jurídicas e Contribuição para o Financiamento da Seguridade Social - Cofins, no âmbito da jurisdição do estado de São Paulo, no período de 2000 a 2007. Os resultados das previsões dos modelos acima citados são comparados entre si, com a modelagem ARIMA e com o método dos indicadores, atualmente utilizado pela Secretaria da Receita Federal do Brasil (RFB) para previsão anual da arrecadação tributária, por meio da raiz do erro médio quadrático de previsão (RMSE). A redução média do RMSE foi de 42% em relação ao erro cometido pelo método dos indicadores e de 35% em relação à modelagem ARIMA, além da drástica redução do erro anual de previsão. A utilização de metodologias de séries temporais para a previsão da arrecadação de receitas federais mostrou ser uma alternativa viável ao método dos indicadores, contribuindo para previsões mais precisas, tornando-se ferramenta segura de apoio para a tomada de decisões dos gestores.
publishDate 2009
dc.date.none.fl_str_mv 2009-03-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/96/96131/tde-12052009-150243/
url http://www.teses.usp.br/teses/disponiveis/96/96131/tde-12052009-150243/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258055904854016