High-throughput phenotyping via UAS: the optimization within a breeding program and a new validation method based on simulation

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Galli, Giovanni
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11137/tde-21052020-121330/
Resumo: High-throughput phenotyping (HTP), or simply phenomics, has drawn the attention of the scientific community as a field with the potential to increase phenotyping cost-effectiveness and accuracy. Nevertheless, the feasibility of this set of approaches is yet to be confirmed. In this sense, two major challenges to its application are optimizing the data-to-decision process and the validation of procedures and pipelines for specific selection scenarios. We add to this matter by reporting on two studies aimed at the optimization and validation of field HTP based on unmanned aerial systems (UAS). In the first, we presented a proof-of-concept investigation using a grain sorghum dataset with the intent of identifying when HTP data should be collected and how it should be processed for the optimization of prediction of two major traits, grain yield and plant health. Our findings suggest that there is no predictive ability increase when combining multiple vegetation indices and flight dates. Additionally, a single index and flight can be used for predicting both traits without expressive accuracy loss. In the second, we presented a new tool for validating aerial image-based HTP approaches with computer simulations. The approach was exemplified with a comprehensive study case of plant height estimation in maize. Our results show that the in silico experiments could be adequately reconstructed with structure-from-motion algorithms using UAS-like rendered images, enabling inference-making about tested factors. This study also brought new insights into the effect of experimental factors over the accuracy of plant height assessment using HTP. At last, we believe that our findings allowed the promotion of a deeper understanding of the HTP practice, enabling breeders to work towards a more reliable and cost-effective selection.
id USP_a517594eeb5c0fd8a75010484485cf13
oai_identifier_str oai:teses.usp.br:tde-21052020-121330
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling High-throughput phenotyping via UAS: the optimization within a breeding program and a new validation method based on simulationFenotipagem de alto rendimento via VANTs: a otimização em um programa de melhoramento e um novo método de validação baseado em simulaçãoAerial imageryFenômicaImageamento aéreoIn silicoIn silicoPhenomicsSorghumSorgoStructure-from-motionStructure-from-motionHigh-throughput phenotyping (HTP), or simply phenomics, has drawn the attention of the scientific community as a field with the potential to increase phenotyping cost-effectiveness and accuracy. Nevertheless, the feasibility of this set of approaches is yet to be confirmed. In this sense, two major challenges to its application are optimizing the data-to-decision process and the validation of procedures and pipelines for specific selection scenarios. We add to this matter by reporting on two studies aimed at the optimization and validation of field HTP based on unmanned aerial systems (UAS). In the first, we presented a proof-of-concept investigation using a grain sorghum dataset with the intent of identifying when HTP data should be collected and how it should be processed for the optimization of prediction of two major traits, grain yield and plant health. Our findings suggest that there is no predictive ability increase when combining multiple vegetation indices and flight dates. Additionally, a single index and flight can be used for predicting both traits without expressive accuracy loss. In the second, we presented a new tool for validating aerial image-based HTP approaches with computer simulations. The approach was exemplified with a comprehensive study case of plant height estimation in maize. Our results show that the in silico experiments could be adequately reconstructed with structure-from-motion algorithms using UAS-like rendered images, enabling inference-making about tested factors. This study also brought new insights into the effect of experimental factors over the accuracy of plant height assessment using HTP. At last, we believe that our findings allowed the promotion of a deeper understanding of the HTP practice, enabling breeders to work towards a more reliable and cost-effective selection.A Fenotipagem de alto rendimento (HTP), ou simplesmente fenômica, tem chamado a atenção da comunidade científica como uma área com potencial de aumentar a custo-efetividade e acurácia de fenotipagem. Entretanto, a viabilidade deste conjunto de abordagens ainda precisa confirmação. Neste contexto, dois grandes desafios para a seu emprego são a otimização do uso de dados (data-to-decision) e a validação de procedimentos para cenários específicos de seleção. Nós acrescentamos a este tema reportando resultados de dois estudos que objetivaram a otimização e validação de HTP para experimentos a campo baseada em veículos aéreos não tripulados (VANTs). No primeiro, apresentamos uma prova de conceito usando dados de sorgo granífero com o objetivo de identificar quando os dados de HTP devem ser coletados e como devem ser processados para a otimização da predição de dois caracteres de importância agronômica, produtividade de grãos e sanidade de planta. Nossos resultados sugerem que não há incremento da capacidade preditiva quando múltiplos índices vegetativos e voos são combinados. Adicionalmente, um único índice e voo pode ser usado para predizer ambas características sem perda expressiva de acurácia. No segundo, apresentamos uma nova ferramenta para validação de abordagens de HTP baseadas em imagens aéreas com uso de simulações de computador. A ferramenta foi exemplificada com um estudo de caso de mensuração de altura de plantas em milho. Nossos resultados sugerem que os experimentos gerados in silico podem ser adequadamente reconstruídos com algoritmos de structure-from-motion usando imagens renderizadas, permitindo a realização de inferências sobre os fatores testados. Este estudo também trouxe novos conhecimentos sobre o efeito de fatores experimentais sobre a acurácia da mensuração de altura de plantas usando HTP. Por fim, acreditamos que nossos resultados permitirão a compreensão mais profunda da prática da HTP, auxiliando os melhoristas na busca por uma seleção mais confiável e custo-efetiva.Biblioteca Digitais de Teses e Dissertações da USPFritsche Neto, RobertoGalli, Giovanni2020-04-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11137/tde-21052020-121330/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-05-21T12:59:32Zoai:teses.usp.br:tde-21052020-121330Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-05-21T12:59:32Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv High-throughput phenotyping via UAS: the optimization within a breeding program and a new validation method based on simulation
Fenotipagem de alto rendimento via VANTs: a otimização em um programa de melhoramento e um novo método de validação baseado em simulação
title High-throughput phenotyping via UAS: the optimization within a breeding program and a new validation method based on simulation
spellingShingle High-throughput phenotyping via UAS: the optimization within a breeding program and a new validation method based on simulation
Galli, Giovanni
Aerial imagery
Fenômica
Imageamento aéreo
In silico
In silico
Phenomics
Sorghum
Sorgo
Structure-from-motion
Structure-from-motion
title_short High-throughput phenotyping via UAS: the optimization within a breeding program and a new validation method based on simulation
title_full High-throughput phenotyping via UAS: the optimization within a breeding program and a new validation method based on simulation
title_fullStr High-throughput phenotyping via UAS: the optimization within a breeding program and a new validation method based on simulation
title_full_unstemmed High-throughput phenotyping via UAS: the optimization within a breeding program and a new validation method based on simulation
title_sort High-throughput phenotyping via UAS: the optimization within a breeding program and a new validation method based on simulation
author Galli, Giovanni
author_facet Galli, Giovanni
author_role author
dc.contributor.none.fl_str_mv Fritsche Neto, Roberto
dc.contributor.author.fl_str_mv Galli, Giovanni
dc.subject.por.fl_str_mv Aerial imagery
Fenômica
Imageamento aéreo
In silico
In silico
Phenomics
Sorghum
Sorgo
Structure-from-motion
Structure-from-motion
topic Aerial imagery
Fenômica
Imageamento aéreo
In silico
In silico
Phenomics
Sorghum
Sorgo
Structure-from-motion
Structure-from-motion
description High-throughput phenotyping (HTP), or simply phenomics, has drawn the attention of the scientific community as a field with the potential to increase phenotyping cost-effectiveness and accuracy. Nevertheless, the feasibility of this set of approaches is yet to be confirmed. In this sense, two major challenges to its application are optimizing the data-to-decision process and the validation of procedures and pipelines for specific selection scenarios. We add to this matter by reporting on two studies aimed at the optimization and validation of field HTP based on unmanned aerial systems (UAS). In the first, we presented a proof-of-concept investigation using a grain sorghum dataset with the intent of identifying when HTP data should be collected and how it should be processed for the optimization of prediction of two major traits, grain yield and plant health. Our findings suggest that there is no predictive ability increase when combining multiple vegetation indices and flight dates. Additionally, a single index and flight can be used for predicting both traits without expressive accuracy loss. In the second, we presented a new tool for validating aerial image-based HTP approaches with computer simulations. The approach was exemplified with a comprehensive study case of plant height estimation in maize. Our results show that the in silico experiments could be adequately reconstructed with structure-from-motion algorithms using UAS-like rendered images, enabling inference-making about tested factors. This study also brought new insights into the effect of experimental factors over the accuracy of plant height assessment using HTP. At last, we believe that our findings allowed the promotion of a deeper understanding of the HTP practice, enabling breeders to work towards a more reliable and cost-effective selection.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11137/tde-21052020-121330/
url http://www.teses.usp.br/teses/disponiveis/11/11137/tde-21052020-121330/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258360287592448