Classificação semiautomática de imagens de satélites e suas implicações na modelação do escoamento superficial direto em bacias urbanas
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/18/18138/tde-20032017-113548/ |
Resumo: | A modelagem hidrológica quando associada aos recursos do sensoriamento remoto e do geoprocessamento torna-se uma ferramenta importante, pois é capaz de estabelecer diferentes cenários da cobertura e do uso da terra e suas implicações na drenagem urbana, auxiliando no planejamento urbano. Entretanto, a relação entre o modelo chuva x vazão e tais técnicas, com finalidade de avaliar classificadores de imagens a partir de hidrogramas de cheia não foi encontrada na literatura, tornando esse o objetivo principal desta tese. Para isso, foram utilizadas três imagens de satélite de diferentes resoluções espaciais (0,5m, 5m e 15m) e três algoritmos classificadores (Máxima Verossimilhança, Máquinas Vetores Suporte e Análise Orientada a Objeto) e formados conjuntos denominado \"classificador-imagem\" para classificação da cobertura e do uso da terra. As áreas das classes dos usos da terra de cada conjunto \"classificador-imagem\" e os valores de Curve Number foram os principais dados de entrada do modelo chuva-vazão NRCS, que permitiu gerar os hidrogramas de cheia para cada caso. Os hidrogramas simulados foram comparados aos hidrogramas observados na bacia e avaliados, quanto a sua representatividade, pelo coeficiente de Nash Sutcliffe. As classificações do uso da terra foram avaliadas pelo Índice Kappa, com valores de 0,58 a 0,99 e pela Exatidão Global, com valores de 0,64 a 0,99. Para as vazões, o coeficiente de Nash Sutcliffe foi considerado satisfatório (NS<0,50) em duas simulações e, nas demais simulações, considerado muito bom (NS>0,75). Para fornecer subsídio a tomada de decisão, foi realizada uma análise multicritério dos conjuntos classificador-imagem, que permitiu classificar os conjuntos com maior desempenho: 1°) o classificador SVM e a imagem Landsat-8; 2°) o classificador MaxVer e a imagem WordView-II; 3°) o classificador NN e a imagem RapidEye. |
| id |
USP_a720769ff145d32ce1b24931326bc616 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-20032017-113548 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Classificação semiautomática de imagens de satélites e suas implicações na modelação do escoamento superficial direto em bacias urbanasSemi-automatic classification of satellite images and their implications in modeling direct runoff in urban watershedsAlgoritmo de classificação de imagensAnálise multicritérioImage classification algorithmModelo chuva-vazãoMulticriteria-analyseRemote sensingRouting modelSensoriamento remotoA modelagem hidrológica quando associada aos recursos do sensoriamento remoto e do geoprocessamento torna-se uma ferramenta importante, pois é capaz de estabelecer diferentes cenários da cobertura e do uso da terra e suas implicações na drenagem urbana, auxiliando no planejamento urbano. Entretanto, a relação entre o modelo chuva x vazão e tais técnicas, com finalidade de avaliar classificadores de imagens a partir de hidrogramas de cheia não foi encontrada na literatura, tornando esse o objetivo principal desta tese. Para isso, foram utilizadas três imagens de satélite de diferentes resoluções espaciais (0,5m, 5m e 15m) e três algoritmos classificadores (Máxima Verossimilhança, Máquinas Vetores Suporte e Análise Orientada a Objeto) e formados conjuntos denominado \"classificador-imagem\" para classificação da cobertura e do uso da terra. As áreas das classes dos usos da terra de cada conjunto \"classificador-imagem\" e os valores de Curve Number foram os principais dados de entrada do modelo chuva-vazão NRCS, que permitiu gerar os hidrogramas de cheia para cada caso. Os hidrogramas simulados foram comparados aos hidrogramas observados na bacia e avaliados, quanto a sua representatividade, pelo coeficiente de Nash Sutcliffe. As classificações do uso da terra foram avaliadas pelo Índice Kappa, com valores de 0,58 a 0,99 e pela Exatidão Global, com valores de 0,64 a 0,99. Para as vazões, o coeficiente de Nash Sutcliffe foi considerado satisfatório (NS<0,50) em duas simulações e, nas demais simulações, considerado muito bom (NS>0,75). Para fornecer subsídio a tomada de decisão, foi realizada uma análise multicritério dos conjuntos classificador-imagem, que permitiu classificar os conjuntos com maior desempenho: 1°) o classificador SVM e a imagem Landsat-8; 2°) o classificador MaxVer e a imagem WordView-II; 3°) o classificador NN e a imagem RapidEye.Hydrological modeling when associated with remote sensing and geoprocessing resources becomes an important tool, because it is able to establish different land use scenarios and its implications for urban drainage, assisting in urban planning. However, the relationship between the routing model and such techniques, for purpose to evaluate images classifiers from the runoff hydrograph was not found in the literature, making this the main objective of this thesis. Thereunto, three satellite images were used in different spatial resolutions (0.5m, 5m and 15m) and three algorithms classifiers (Maximum Likelihood, Support Vector Machine and Oriented Object Analysis) and composed sets called \"classifier-image\" for the land use classification. The areas of the land use classes of each set \"classifier-image\" and the Curve Number values were the main input of the routing model NRCS, which allowed generating the runoff hydrograph for each case. The simulated hydrographs were compared to the observed hydrograph in the basin and evaluated their representativeness through the Nash Sutcliffe coefficient. Kappa Index was calculated to evaluate land use classifications, with values between 0.58 to 0.99 and Global accuracy between 0.64 to 0.99. Towards the flows rates, the Nash Sutcliffe coefficient was considered satisfactory for two simulations (NS<0,50) and, to other simulations, considered very good (NS>0,75). To provide subsidy to decision-making, it carried out a multi-criteria analysis of the classifier-image sets, that allowed to classify the set with higher performance: 1) SVM classifier and Landsat-8 image; 2) MaxVer classifier and WorldView-II image; 3) NN classifier and RapidEye image.Biblioteca Digitais de Teses e Dissertações da USPBrandão, João Luiz BocciaAngelini Sobrinha, Lôide2016-07-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18138/tde-20032017-113548/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:34:08Zoai:teses.usp.br:tde-20032017-113548Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:34:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Classificação semiautomática de imagens de satélites e suas implicações na modelação do escoamento superficial direto em bacias urbanas Semi-automatic classification of satellite images and their implications in modeling direct runoff in urban watersheds |
| title |
Classificação semiautomática de imagens de satélites e suas implicações na modelação do escoamento superficial direto em bacias urbanas |
| spellingShingle |
Classificação semiautomática de imagens de satélites e suas implicações na modelação do escoamento superficial direto em bacias urbanas Angelini Sobrinha, Lôide Algoritmo de classificação de imagens Análise multicritério Image classification algorithm Modelo chuva-vazão Multicriteria-analyse Remote sensing Routing model Sensoriamento remoto |
| title_short |
Classificação semiautomática de imagens de satélites e suas implicações na modelação do escoamento superficial direto em bacias urbanas |
| title_full |
Classificação semiautomática de imagens de satélites e suas implicações na modelação do escoamento superficial direto em bacias urbanas |
| title_fullStr |
Classificação semiautomática de imagens de satélites e suas implicações na modelação do escoamento superficial direto em bacias urbanas |
| title_full_unstemmed |
Classificação semiautomática de imagens de satélites e suas implicações na modelação do escoamento superficial direto em bacias urbanas |
| title_sort |
Classificação semiautomática de imagens de satélites e suas implicações na modelação do escoamento superficial direto em bacias urbanas |
| author |
Angelini Sobrinha, Lôide |
| author_facet |
Angelini Sobrinha, Lôide |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Brandão, João Luiz Boccia |
| dc.contributor.author.fl_str_mv |
Angelini Sobrinha, Lôide |
| dc.subject.por.fl_str_mv |
Algoritmo de classificação de imagens Análise multicritério Image classification algorithm Modelo chuva-vazão Multicriteria-analyse Remote sensing Routing model Sensoriamento remoto |
| topic |
Algoritmo de classificação de imagens Análise multicritério Image classification algorithm Modelo chuva-vazão Multicriteria-analyse Remote sensing Routing model Sensoriamento remoto |
| description |
A modelagem hidrológica quando associada aos recursos do sensoriamento remoto e do geoprocessamento torna-se uma ferramenta importante, pois é capaz de estabelecer diferentes cenários da cobertura e do uso da terra e suas implicações na drenagem urbana, auxiliando no planejamento urbano. Entretanto, a relação entre o modelo chuva x vazão e tais técnicas, com finalidade de avaliar classificadores de imagens a partir de hidrogramas de cheia não foi encontrada na literatura, tornando esse o objetivo principal desta tese. Para isso, foram utilizadas três imagens de satélite de diferentes resoluções espaciais (0,5m, 5m e 15m) e três algoritmos classificadores (Máxima Verossimilhança, Máquinas Vetores Suporte e Análise Orientada a Objeto) e formados conjuntos denominado \"classificador-imagem\" para classificação da cobertura e do uso da terra. As áreas das classes dos usos da terra de cada conjunto \"classificador-imagem\" e os valores de Curve Number foram os principais dados de entrada do modelo chuva-vazão NRCS, que permitiu gerar os hidrogramas de cheia para cada caso. Os hidrogramas simulados foram comparados aos hidrogramas observados na bacia e avaliados, quanto a sua representatividade, pelo coeficiente de Nash Sutcliffe. As classificações do uso da terra foram avaliadas pelo Índice Kappa, com valores de 0,58 a 0,99 e pela Exatidão Global, com valores de 0,64 a 0,99. Para as vazões, o coeficiente de Nash Sutcliffe foi considerado satisfatório (NS<0,50) em duas simulações e, nas demais simulações, considerado muito bom (NS>0,75). Para fornecer subsídio a tomada de decisão, foi realizada uma análise multicritério dos conjuntos classificador-imagem, que permitiu classificar os conjuntos com maior desempenho: 1°) o classificador SVM e a imagem Landsat-8; 2°) o classificador MaxVer e a imagem WordView-II; 3°) o classificador NN e a imagem RapidEye. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-07-15 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/18/18138/tde-20032017-113548/ |
| url |
http://www.teses.usp.br/teses/disponiveis/18/18138/tde-20032017-113548/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258281048801280 |