Modelos de transição para dados binários
| Ano de defesa: | 2007 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/11/11134/tde-04122007-102643/ |
Resumo: | Dados binários ou dicotômicos são comuns em muitas áreas das ciências, nas quais, muitas vezes, há interesse em registrar a ocorrência, ou não, de um evento particular. Por outro lado, quando cada unidade amostral é avaliada em mais de uma ocasião no tempo, tem-se dados longitudinais ou medidas repetidas no tempo. é comum também, nesses estudos, se ter uma ou mais variáveis explicativas associadas às variáveis respostas. As variáveis explicativas podem ser dependentes ou independentes do tempo. Na literatura, há técnicas disponíveis para a modelagem e análise desses dados, sendo os modelos disponíveis extensões dos modelos lineares generalizados. O enfoque do presente trabalho é dado aos modelos lineares generalizados de transição para a análise de dados longitudinais envolvendo uma resposta do tipo binária. Esses modelos são baseados em processos estocásticos e o interesse está em modelar as probabilidades de mudanças ou transições de categorias de respostas dos indivíduos no tempo. A suposição mais utilizada nesses processos é a da propriedade markoviana, a qual condiciona a resposta numa dada ocasião ao estado na ocasião anterior. Assim, são revistos os fundamentos para se especificar tais modelos, distinguindo-se os casos estacionário e não-estacionário. O método da máxima verossimilhança é utilizado para o ajuste dos modelos e estimação das probabilidades. Adicionalmente, apresentam-se testes assintóticos para comparar tratamentos, baseados na razão de chances e na diferença das probabilidades de transição. Outra questão explorada é a combinação do modelo de efeitos aleatórios com a do modelo de transição. Os métodos são ilustrados com um exemplo da área da saúde. Para esses dados, o processo é considerado estacionário de ordem dois e o teste proposto sinaliza diferença estatisticamente significativa a favor do tratamento ativo. Apesar de ser uma abordagem inicial dessa metodologia, verifica-se, que os modelos de transição têm notável aplicabilidade e são fontes para estudos e pesquisas futuras. |
| id |
USP_a7d4d47afffbaba1542eb64391c4eb6b |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-04122007-102643 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Modelos de transição para dados bináriosTransition models for binary dataAnálise de dados longitudinaisAnalysis of longitudinal dataGeneralized linear modelLikelihoodModelos lineares generalizadosProcessos estocásticosStochastic processesVerossimilhançaDados binários ou dicotômicos são comuns em muitas áreas das ciências, nas quais, muitas vezes, há interesse em registrar a ocorrência, ou não, de um evento particular. Por outro lado, quando cada unidade amostral é avaliada em mais de uma ocasião no tempo, tem-se dados longitudinais ou medidas repetidas no tempo. é comum também, nesses estudos, se ter uma ou mais variáveis explicativas associadas às variáveis respostas. As variáveis explicativas podem ser dependentes ou independentes do tempo. Na literatura, há técnicas disponíveis para a modelagem e análise desses dados, sendo os modelos disponíveis extensões dos modelos lineares generalizados. O enfoque do presente trabalho é dado aos modelos lineares generalizados de transição para a análise de dados longitudinais envolvendo uma resposta do tipo binária. Esses modelos são baseados em processos estocásticos e o interesse está em modelar as probabilidades de mudanças ou transições de categorias de respostas dos indivíduos no tempo. A suposição mais utilizada nesses processos é a da propriedade markoviana, a qual condiciona a resposta numa dada ocasião ao estado na ocasião anterior. Assim, são revistos os fundamentos para se especificar tais modelos, distinguindo-se os casos estacionário e não-estacionário. O método da máxima verossimilhança é utilizado para o ajuste dos modelos e estimação das probabilidades. Adicionalmente, apresentam-se testes assintóticos para comparar tratamentos, baseados na razão de chances e na diferença das probabilidades de transição. Outra questão explorada é a combinação do modelo de efeitos aleatórios com a do modelo de transição. Os métodos são ilustrados com um exemplo da área da saúde. Para esses dados, o processo é considerado estacionário de ordem dois e o teste proposto sinaliza diferença estatisticamente significativa a favor do tratamento ativo. Apesar de ser uma abordagem inicial dessa metodologia, verifica-se, que os modelos de transição têm notável aplicabilidade e são fontes para estudos e pesquisas futuras.Binary or dichotomous data are quite common in many fields of Sciences in which there is an interest in registering the occurrence of a particular event. On the other hand, when each sampled unit is evaluated in more than one occasion, we have longitudinal data or repeated measures over time. It is also common, in longitudinal studies, to have explanatory variables associated to response measures, which can be time dependent or independent. In the literature, there are many approaches to modeling and evaluating these data, where the models are extensions of generalized linear models. This work focus on generalized linear transition models suitable for analyzing longitudinal data with binary response. Such models are based on stochastic processes and we aim to model the probabilities of change or transitions of individual response categories in time. The most used assumption in these processes is the Markov property, in which the response in one occasion depends on the immediately preceding response. Thus we review the fundamentals to specify these models, showing the diferences between stationary and non-stationary processes. The maximum likelihood approach is used in order to fit the models and estimate the probabilities. Furthermore, we show asymptotic tests to compare treatments based on odds ratio and on the diferences of transition probabilities. We also present a combination of random-efects model with transition model. The methods are illustrated with health data. For these data, the process is stationary of order two and the suggested test points to a significant statistical diference in favor of the active treatment. This work is an initial approach to transition models, which have high applicability and are great sources for further studies and researches.Biblioteca Digitais de Teses e Dissertações da USPDemetrio, Clarice Garcia BorgesLara, Idemauro Antonio Rodrigues de2007-10-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-04122007-102643/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:54Zoai:teses.usp.br:tde-04122007-102643Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:54Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Modelos de transição para dados binários Transition models for binary data |
| title |
Modelos de transição para dados binários |
| spellingShingle |
Modelos de transição para dados binários Lara, Idemauro Antonio Rodrigues de Análise de dados longitudinais Analysis of longitudinal data Generalized linear model Likelihood Modelos lineares generalizados Processos estocásticos Stochastic processes Verossimilhança |
| title_short |
Modelos de transição para dados binários |
| title_full |
Modelos de transição para dados binários |
| title_fullStr |
Modelos de transição para dados binários |
| title_full_unstemmed |
Modelos de transição para dados binários |
| title_sort |
Modelos de transição para dados binários |
| author |
Lara, Idemauro Antonio Rodrigues de |
| author_facet |
Lara, Idemauro Antonio Rodrigues de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Demetrio, Clarice Garcia Borges |
| dc.contributor.author.fl_str_mv |
Lara, Idemauro Antonio Rodrigues de |
| dc.subject.por.fl_str_mv |
Análise de dados longitudinais Analysis of longitudinal data Generalized linear model Likelihood Modelos lineares generalizados Processos estocásticos Stochastic processes Verossimilhança |
| topic |
Análise de dados longitudinais Analysis of longitudinal data Generalized linear model Likelihood Modelos lineares generalizados Processos estocásticos Stochastic processes Verossimilhança |
| description |
Dados binários ou dicotômicos são comuns em muitas áreas das ciências, nas quais, muitas vezes, há interesse em registrar a ocorrência, ou não, de um evento particular. Por outro lado, quando cada unidade amostral é avaliada em mais de uma ocasião no tempo, tem-se dados longitudinais ou medidas repetidas no tempo. é comum também, nesses estudos, se ter uma ou mais variáveis explicativas associadas às variáveis respostas. As variáveis explicativas podem ser dependentes ou independentes do tempo. Na literatura, há técnicas disponíveis para a modelagem e análise desses dados, sendo os modelos disponíveis extensões dos modelos lineares generalizados. O enfoque do presente trabalho é dado aos modelos lineares generalizados de transição para a análise de dados longitudinais envolvendo uma resposta do tipo binária. Esses modelos são baseados em processos estocásticos e o interesse está em modelar as probabilidades de mudanças ou transições de categorias de respostas dos indivíduos no tempo. A suposição mais utilizada nesses processos é a da propriedade markoviana, a qual condiciona a resposta numa dada ocasião ao estado na ocasião anterior. Assim, são revistos os fundamentos para se especificar tais modelos, distinguindo-se os casos estacionário e não-estacionário. O método da máxima verossimilhança é utilizado para o ajuste dos modelos e estimação das probabilidades. Adicionalmente, apresentam-se testes assintóticos para comparar tratamentos, baseados na razão de chances e na diferença das probabilidades de transição. Outra questão explorada é a combinação do modelo de efeitos aleatórios com a do modelo de transição. Os métodos são ilustrados com um exemplo da área da saúde. Para esses dados, o processo é considerado estacionário de ordem dois e o teste proposto sinaliza diferença estatisticamente significativa a favor do tratamento ativo. Apesar de ser uma abordagem inicial dessa metodologia, verifica-se, que os modelos de transição têm notável aplicabilidade e são fontes para estudos e pesquisas futuras. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007-10-31 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-04122007-102643/ |
| url |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-04122007-102643/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257867814436864 |