Prediction of human subjective time from functional magnetic resonance imaging
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/59/59135/tde-22012025-121936/ |
Resumo: | Time perception is one of the essential components of human perception and can be biased by different features present in daily stimuli, causing substantial variations in relation to real (clock) time. In this study, we sought to investigate the neural bases of the timing of durations and validate the hypothesis that subjective time is determined by the accumulation of salient changes in the perceptual processing. To this end, we executed five approaches based on data obtained from an experiment in which healthy human participants watched and estimated the duration of silent videos of varying lengths (a few seconds) while functional magnetic resonance imaging (fMRI) scans were acquired. In the first approach, we aimed to reproduce the findings reported in the original study using equivalent methodology. We used three brain parcellation schemes based on perceptual hierarchies (visual, auditory, and somatosensory) to predict the subjective time metric (normalized duration bias) from salient events accumulated in the fMRI signal. We confirmed the original finding that the visual hierarchy has the strongest association with duration bias, given that the stimulus is purely visual. However, contrary to the original study, we found that the association observed in the somatosensory hierarchy is also substantial and should be further evaluated. In the second approach, we applied a methodology similar to the previous one but with a parcellation based on functional networks composed of 360 cortical regions. In this case, we showed that regions in networks other than the visual network also exhibited significant associations with duration bias: the dorsal attention network, the cingulo-opercular network, and the somatomotor network. In the third approach, we used a recurrent (LSTM) deep learning model to capture features present in the fMRI signal across 360 cortical regions that might be associated with duration bias. We evaluated the model\'s performance across a wide range of hyperparameter combinations. With this model, it was not possible to predict duration bias. In the fourth approach, we used the same 360-region atlas to evaluate whether functional connectivity (FC) between these regions was associated with duration biases, since in the second approach we showed that different functional networks were associated with this metric. Using a regularized linear regression model, we were unable to predict duration bias from inter-individual variations in FC. In the fifth approach, we applied independent component analysis (ICA) to the fMRI data to assess the existence of spatial components significantly associated with the experimental design and thus the time perception task. None of the components obtained showed consistent correlation across participants. The findings of this study highlight that the salient event approach requires further validation, as the level of association obtained with duration bias was low. However, we demonstrated that regions within additional functional networks likely play important roles in the timing of durations in a visual stimulation context. Future studies should focus on a more precise evaluation of which regions within these networks are most predictive of subjective time. |
| id |
USP_aefd205b0520405f4562bdb3025ad156 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-22012025-121936 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Prediction of human subjective time from functional magnetic resonance imagingPredição de tempo subjetivo em humanos a partir de imagens por ressonância magnética funcionalAprendizado de máquinaCerebral cortexCórtex cerebralFunctional MRIHuman time perceptionIRM funcionalMachine learningNeurociênciaNeurosciencePercepção do tempo humanaTime perception is one of the essential components of human perception and can be biased by different features present in daily stimuli, causing substantial variations in relation to real (clock) time. In this study, we sought to investigate the neural bases of the timing of durations and validate the hypothesis that subjective time is determined by the accumulation of salient changes in the perceptual processing. To this end, we executed five approaches based on data obtained from an experiment in which healthy human participants watched and estimated the duration of silent videos of varying lengths (a few seconds) while functional magnetic resonance imaging (fMRI) scans were acquired. In the first approach, we aimed to reproduce the findings reported in the original study using equivalent methodology. We used three brain parcellation schemes based on perceptual hierarchies (visual, auditory, and somatosensory) to predict the subjective time metric (normalized duration bias) from salient events accumulated in the fMRI signal. We confirmed the original finding that the visual hierarchy has the strongest association with duration bias, given that the stimulus is purely visual. However, contrary to the original study, we found that the association observed in the somatosensory hierarchy is also substantial and should be further evaluated. In the second approach, we applied a methodology similar to the previous one but with a parcellation based on functional networks composed of 360 cortical regions. In this case, we showed that regions in networks other than the visual network also exhibited significant associations with duration bias: the dorsal attention network, the cingulo-opercular network, and the somatomotor network. In the third approach, we used a recurrent (LSTM) deep learning model to capture features present in the fMRI signal across 360 cortical regions that might be associated with duration bias. We evaluated the model\'s performance across a wide range of hyperparameter combinations. With this model, it was not possible to predict duration bias. In the fourth approach, we used the same 360-region atlas to evaluate whether functional connectivity (FC) between these regions was associated with duration biases, since in the second approach we showed that different functional networks were associated with this metric. Using a regularized linear regression model, we were unable to predict duration bias from inter-individual variations in FC. In the fifth approach, we applied independent component analysis (ICA) to the fMRI data to assess the existence of spatial components significantly associated with the experimental design and thus the time perception task. None of the components obtained showed consistent correlation across participants. The findings of this study highlight that the salient event approach requires further validation, as the level of association obtained with duration bias was low. However, we demonstrated that regions within additional functional networks likely play important roles in the timing of durations in a visual stimulation context. Future studies should focus on a more precise evaluation of which regions within these networks are most predictive of subjective time.A percepção do tempo é uma das componentes essenciais que compõem a percepção humana e pode ser enviesada por diferentes características presentes nos estímulos do dia-a-dia que causam variações substanciais em relação ao tempo real (do relógio). Neste estudo, buscamos investigar as bases neurais da quantificação de durações e validar a hipótese de que o tempo subjetivo é determinado pelo acúmulo de mudanças salientes no processamento perceptual. Para isso, executamos cinco abordagens baseadas nos dados obtidos a partir de um experimento em que participantes humanos saudáveis assistiram e estimaram a duração de vídeos silenciosos de durações variadas (alguns segundos) enquanto eram adquiridas imagens de ressonância magnética funcional (fMRI). Na primeira abordagem, buscamos reproduzir os achados reportados no estudo original com a metodologia equivalente. Usamos três esquemas de parcelamento cerebral baseados em hierarquias perceptuais (visual, auditivo e somatossensorial) para predizer a métrica de tempo subjetivo (viés de duração normalizado) a partir de eventos salientes acumulados no sinal de fMRI. Confirmamos o achado original de que a hierarquia visual apresenta associação mais forte com o viés de duração, dado que o estímulo é apenas visual. Porém, ao contrário do estudo original, achamos que a associação encontrada para a hierarquia somatossenssorial também é substancial e deve ser avaliada futuramente. Na segunda abordagem, aplicamos uma metodologia similar a anterior mas com um parcelamento baseado em redes funcionais e composto por 360 regiões corticais. Neste caso, mostramos que regiões presentes em outras redes, além da visual, também apresentam associação significativa com o viés de duração: a rede de atenção dorsal, a rede cingulo-opercular e a rede somatomotora. Na terceira abordagem, usamos um modelo recorrente (LSTM) de aprendizado profundo para tentar capturar características presentes no sinal de fMRI ao longo de 360 regiões corticais que poderiam estar associadas ao viés de duração. Avaliamos a performance do modelo para uma vasta combinação de hiper-parâmetros. Com esse modelo, não foi possível predizer o viés de duração. Na quarta abordagem, usamos o mesmo atlas de 360 regiões para avaliar se a conectividade funcional (FC) entre essas regiões está associada aos viéses de duração, já que na segunda abordagem nós mostramos que diferentes redes funcionais apresentaram associação com essa métrica. Usando um modelo de regressão linear regularizada, não conseguimos predizer o viés de duração a partir das variações inter-individuais de FC. Na quinta abordagem, nós aplicamos análise de componentes independentes (ICA) aos dados de fMRI para avaliar a existência de componentes espaciais significativamente associadas ao desenho experimental executado e portanto à tarefa de percepção do tempo. Nenhuma das componentes obtidas apresentou correlação que fosse consistente entre os participantes. Os achados deste estudo destacam que a abordagem de eventos salientes precisa de validação adicional, já que o nível de associação obtido com o viés de duração foi baixo. Entretanto, nós mostramos que regiões presentes em redes funcionais adicionais devem ter papéis importantes para quantificação de durações em um contexto de estímulação visual. Os próximos estudos devem voltar sua atenção para uma avaliação mais precisa de quais regiões dentro dessas redes são mais preditivas do tempo subjetivo.Biblioteca Digitais de Teses e Dissertações da USPSalmon, Carlos Ernesto GarridoSouza, Erick Almeida de2024-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/59/59135/tde-22012025-121936/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-03-18T17:14:02Zoai:teses.usp.br:tde-22012025-121936Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-03-18T17:14:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Prediction of human subjective time from functional magnetic resonance imaging Predição de tempo subjetivo em humanos a partir de imagens por ressonância magnética funcional |
| title |
Prediction of human subjective time from functional magnetic resonance imaging |
| spellingShingle |
Prediction of human subjective time from functional magnetic resonance imaging Souza, Erick Almeida de Aprendizado de máquina Cerebral cortex Córtex cerebral Functional MRI Human time perception IRM funcional Machine learning Neurociência Neuroscience Percepção do tempo humana |
| title_short |
Prediction of human subjective time from functional magnetic resonance imaging |
| title_full |
Prediction of human subjective time from functional magnetic resonance imaging |
| title_fullStr |
Prediction of human subjective time from functional magnetic resonance imaging |
| title_full_unstemmed |
Prediction of human subjective time from functional magnetic resonance imaging |
| title_sort |
Prediction of human subjective time from functional magnetic resonance imaging |
| author |
Souza, Erick Almeida de |
| author_facet |
Souza, Erick Almeida de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Salmon, Carlos Ernesto Garrido |
| dc.contributor.author.fl_str_mv |
Souza, Erick Almeida de |
| dc.subject.por.fl_str_mv |
Aprendizado de máquina Cerebral cortex Córtex cerebral Functional MRI Human time perception IRM funcional Machine learning Neurociência Neuroscience Percepção do tempo humana |
| topic |
Aprendizado de máquina Cerebral cortex Córtex cerebral Functional MRI Human time perception IRM funcional Machine learning Neurociência Neuroscience Percepção do tempo humana |
| description |
Time perception is one of the essential components of human perception and can be biased by different features present in daily stimuli, causing substantial variations in relation to real (clock) time. In this study, we sought to investigate the neural bases of the timing of durations and validate the hypothesis that subjective time is determined by the accumulation of salient changes in the perceptual processing. To this end, we executed five approaches based on data obtained from an experiment in which healthy human participants watched and estimated the duration of silent videos of varying lengths (a few seconds) while functional magnetic resonance imaging (fMRI) scans were acquired. In the first approach, we aimed to reproduce the findings reported in the original study using equivalent methodology. We used three brain parcellation schemes based on perceptual hierarchies (visual, auditory, and somatosensory) to predict the subjective time metric (normalized duration bias) from salient events accumulated in the fMRI signal. We confirmed the original finding that the visual hierarchy has the strongest association with duration bias, given that the stimulus is purely visual. However, contrary to the original study, we found that the association observed in the somatosensory hierarchy is also substantial and should be further evaluated. In the second approach, we applied a methodology similar to the previous one but with a parcellation based on functional networks composed of 360 cortical regions. In this case, we showed that regions in networks other than the visual network also exhibited significant associations with duration bias: the dorsal attention network, the cingulo-opercular network, and the somatomotor network. In the third approach, we used a recurrent (LSTM) deep learning model to capture features present in the fMRI signal across 360 cortical regions that might be associated with duration bias. We evaluated the model\'s performance across a wide range of hyperparameter combinations. With this model, it was not possible to predict duration bias. In the fourth approach, we used the same 360-region atlas to evaluate whether functional connectivity (FC) between these regions was associated with duration biases, since in the second approach we showed that different functional networks were associated with this metric. Using a regularized linear regression model, we were unable to predict duration bias from inter-individual variations in FC. In the fifth approach, we applied independent component analysis (ICA) to the fMRI data to assess the existence of spatial components significantly associated with the experimental design and thus the time perception task. None of the components obtained showed consistent correlation across participants. The findings of this study highlight that the salient event approach requires further validation, as the level of association obtained with duration bias was low. However, we demonstrated that regions within additional functional networks likely play important roles in the timing of durations in a visual stimulation context. Future studies should focus on a more precise evaluation of which regions within these networks are most predictive of subjective time. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-11-01 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/59/59135/tde-22012025-121936/ |
| url |
https://www.teses.usp.br/teses/disponiveis/59/59135/tde-22012025-121936/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1839839154002722816 |