Comportamento crítico do processo de contato aperiódico: simulações e grupo de renormalização
| Ano de defesa: | 2010 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/43/43134/tde-21102010-123034/ |
Resumo: | Utilizamos um formalismo de operadores e a técnica de grupo de renormalizacao de Dasgupta, Ma e Hu para analisar o efeito de distribuições inomogêneas dos parâmetros sobre o comportamento crítico de um modelo estocástico simples. O processo de contato em uma dimensão constitui talvez o modelo mais simples que apresenta uma transição de fase para um estado absorvente. Nós usamos as seqüências de Fibonacci, duplicação de período e triplicação de período para introduzir inomogeneidades aperiódicas no processo de contato unidimensional e em uma cadeia quântica de spin. Usando procedimento de grupo de renormalização de desordem forte, estabelecemos algumas relações entre propriedades dos operadores renormalizados e grandezas termodinâmicas ou médias. Fomos capazes de testar o critério de relevância de flutuações geométricas de Harris-Luck, de obter vários expoentes críticos, e de observar aspectos característicos de dinâmica lenta e oscilações log-periódicas. A sequência de triplicação de período nos leva aos expoentes = ln (7/9)/ ln (4/9), = ln (9/7)/ ln 4, = ln 3/ ln (3/2) e k = ln 2/ ln (3/2). Usamos técnicas de Monte Carlo para confirmar os resultados de grupo de renormalização. As simulações numéricas indicam a validade do critério de relevância de Harris-Luck, e corroboram o caráter universal do comportamento crítico desses sistemas aperiódicos. |
| id |
USP_af7234147e4d6efe8db5d3f688fe4c76 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-21102010-123034 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Comportamento crítico do processo de contato aperiódico: simulações e grupo de renormalizaçãoCritical behavior of the aperiodic contact process: simulation and renormalization-groupAperiodic squencesContact processFenômenos magnéticosMagnetic phenomenaMecânica estatisticaMecânica quânticaProcesso de contatoQuantum mechanicsSequências aperiódicasStatistical mechanicsUtilizamos um formalismo de operadores e a técnica de grupo de renormalizacao de Dasgupta, Ma e Hu para analisar o efeito de distribuições inomogêneas dos parâmetros sobre o comportamento crítico de um modelo estocástico simples. O processo de contato em uma dimensão constitui talvez o modelo mais simples que apresenta uma transição de fase para um estado absorvente. Nós usamos as seqüências de Fibonacci, duplicação de período e triplicação de período para introduzir inomogeneidades aperiódicas no processo de contato unidimensional e em uma cadeia quântica de spin. Usando procedimento de grupo de renormalização de desordem forte, estabelecemos algumas relações entre propriedades dos operadores renormalizados e grandezas termodinâmicas ou médias. Fomos capazes de testar o critério de relevância de flutuações geométricas de Harris-Luck, de obter vários expoentes críticos, e de observar aspectos característicos de dinâmica lenta e oscilações log-periódicas. A sequência de triplicação de período nos leva aos expoentes = ln (7/9)/ ln (4/9), = ln (9/7)/ ln 4, = ln 3/ ln (3/2) e k = ln 2/ ln (3/2). Usamos técnicas de Monte Carlo para confirmar os resultados de grupo de renormalização. As simulações numéricas indicam a validade do critério de relevância de Harris-Luck, e corroboram o caráter universal do comportamento crítico desses sistemas aperiódicos.We use an operator formalism and the renormalization-group technique of Dasgupta, Ma and Hu to analyze the effects of a nonhomogeneous distribution of parameters on the critical behavior of simple stochastic model system. The contact process in one dimension is perhaps the simplest model to display a phase transition to an absorbing stationary state. We use the Fibonacci, period-doubling and period-tripling sequences for introducing aperiodic inhomogeneities in the one dimensional contact process and in a quantum Ising chain. Using strong-disorder renormalization-group procedures, we establish some relations between properties of renormalized operator and of thermodynamic or mean quantities. We were able to test a well-known criterion of relevance of geometric fluctuations, to obtain a number of critical exponents, and to point out features of slow-dynamics and log-periodic oscillations. The period-tripling sequence leads to the critical exponents = ln (7/9)/ ln (4/9), = ln (9/7)/ ln 4, = ln 3/ ln (3/2) and k = ln 2/ ln (3/2). We then used Monte Carlo techniques to check renormalization-group results. The numerical simulations indicate the validity of the Harris-Luck criterion of relevance of the geometric fluctuations, and generally support the universal character of the critical behavior of these aperiodic systems.Biblioteca Digitais de Teses e Dissertações da USPSalinas, Silvio Roberto de AzevedoFaria, Maicon Saul2010-06-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-21102010-123034/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:12Zoai:teses.usp.br:tde-21102010-123034Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:12Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Comportamento crítico do processo de contato aperiódico: simulações e grupo de renormalização Critical behavior of the aperiodic contact process: simulation and renormalization-group |
| title |
Comportamento crítico do processo de contato aperiódico: simulações e grupo de renormalização |
| spellingShingle |
Comportamento crítico do processo de contato aperiódico: simulações e grupo de renormalização Faria, Maicon Saul Aperiodic squences Contact process Fenômenos magnéticos Magnetic phenomena Mecânica estatistica Mecânica quântica Processo de contato Quantum mechanics Sequências aperiódicas Statistical mechanics |
| title_short |
Comportamento crítico do processo de contato aperiódico: simulações e grupo de renormalização |
| title_full |
Comportamento crítico do processo de contato aperiódico: simulações e grupo de renormalização |
| title_fullStr |
Comportamento crítico do processo de contato aperiódico: simulações e grupo de renormalização |
| title_full_unstemmed |
Comportamento crítico do processo de contato aperiódico: simulações e grupo de renormalização |
| title_sort |
Comportamento crítico do processo de contato aperiódico: simulações e grupo de renormalização |
| author |
Faria, Maicon Saul |
| author_facet |
Faria, Maicon Saul |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Salinas, Silvio Roberto de Azevedo |
| dc.contributor.author.fl_str_mv |
Faria, Maicon Saul |
| dc.subject.por.fl_str_mv |
Aperiodic squences Contact process Fenômenos magnéticos Magnetic phenomena Mecânica estatistica Mecânica quântica Processo de contato Quantum mechanics Sequências aperiódicas Statistical mechanics |
| topic |
Aperiodic squences Contact process Fenômenos magnéticos Magnetic phenomena Mecânica estatistica Mecânica quântica Processo de contato Quantum mechanics Sequências aperiódicas Statistical mechanics |
| description |
Utilizamos um formalismo de operadores e a técnica de grupo de renormalizacao de Dasgupta, Ma e Hu para analisar o efeito de distribuições inomogêneas dos parâmetros sobre o comportamento crítico de um modelo estocástico simples. O processo de contato em uma dimensão constitui talvez o modelo mais simples que apresenta uma transição de fase para um estado absorvente. Nós usamos as seqüências de Fibonacci, duplicação de período e triplicação de período para introduzir inomogeneidades aperiódicas no processo de contato unidimensional e em uma cadeia quântica de spin. Usando procedimento de grupo de renormalização de desordem forte, estabelecemos algumas relações entre propriedades dos operadores renormalizados e grandezas termodinâmicas ou médias. Fomos capazes de testar o critério de relevância de flutuações geométricas de Harris-Luck, de obter vários expoentes críticos, e de observar aspectos característicos de dinâmica lenta e oscilações log-periódicas. A sequência de triplicação de período nos leva aos expoentes = ln (7/9)/ ln (4/9), = ln (9/7)/ ln 4, = ln 3/ ln (3/2) e k = ln 2/ ln (3/2). Usamos técnicas de Monte Carlo para confirmar os resultados de grupo de renormalização. As simulações numéricas indicam a validade do critério de relevância de Harris-Luck, e corroboram o caráter universal do comportamento crítico desses sistemas aperiódicos. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-06-11 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-21102010-123034/ |
| url |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-21102010-123034/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258370482896896 |