Applications of the Extremal Functional Bootstrap

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Meinke, Alexander
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26112018-120129/
Resumo: The study of conformal symmetry is motivated through an example in statistical mechanics and then rigorously developed in quantum field theories in general spatial dimensions. In particular, primary fields are introduced as the fundamental objects of such theories and then studied in the formalism of radial quantization. The implications of conformal invariance on the functional form of correlation functions are studied in detail. Conformal blocks are defined and various approaches to their analytical and numerical calculation are presented with a special emphasis on the one-dimensional case. Building on these preliminaries, a modern formulation of the conformal bootstrap program and its various extensions are discussed. Examples are given in which bounds on the scaling dimensions in a one-dimensional theory are derived numerically. Using these results I motivate the technique of using the extremal functional bootstrap which I then develop in more detail. Many technical details are discussed and examples shown. After a brief discussion of conformal field theories with a boundary I apply numerical methods to find constraints on the spectrum of the 3D Ising model. Another application is presented in which I study the 4-point function on the boundary of a particular theory in Anti-de-Sitter space in order to approximate the mass spectrum of the theory.
id USP_b126b9d68f8554a9cd48576fa6e1c4bb
oai_identifier_str oai:teses.usp.br:tde-26112018-120129
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Applications of the Extremal Functional BootstrapAplicações do Bootstrap Funcional ExtremoBootstrapBootstrapConformal InvariantsCritical ExponentExpoente críticoInvariânçia de escalaInvariantes conformesMecânica estatísticaPhase TransitionScale InvarianceStatistical MechanicsTransição de faseThe study of conformal symmetry is motivated through an example in statistical mechanics and then rigorously developed in quantum field theories in general spatial dimensions. In particular, primary fields are introduced as the fundamental objects of such theories and then studied in the formalism of radial quantization. The implications of conformal invariance on the functional form of correlation functions are studied in detail. Conformal blocks are defined and various approaches to their analytical and numerical calculation are presented with a special emphasis on the one-dimensional case. Building on these preliminaries, a modern formulation of the conformal bootstrap program and its various extensions are discussed. Examples are given in which bounds on the scaling dimensions in a one-dimensional theory are derived numerically. Using these results I motivate the technique of using the extremal functional bootstrap which I then develop in more detail. Many technical details are discussed and examples shown. After a brief discussion of conformal field theories with a boundary I apply numerical methods to find constraints on the spectrum of the 3D Ising model. Another application is presented in which I study the 4-point function on the boundary of a particular theory in Anti-de-Sitter space in order to approximate the mass spectrum of the theory.O estudo da simetria conforme é motivado através de um exemplo em mecânica estatística e em seguida rigorosamente desenvolvido em teorias de campos quânticos em dimensões espaciais gerais. Em particular, os campos primários são introduzidos como os objetos fundamentais de tais teorias e então estudados através do formalismo de quantização radial. As implicações da invariância conforme na forma funcional das funções de correlação são estudadas em detalhe. Blocos conformes são definidos e várias abordagens para seu cálculo analítico e numérico são apresentadas com uma ênfase especial no caso unidimensional. Com base nessas preliminares, uma formulação moderna do programa de bootstrap conforme e suas várias extensões são discutidas. Exemplos são dados em que limites nas dimensões de escala em uma teoria unidimensional são derivados numericamente. Usando esses resultados, motivei a técnica de usar o bootstrap funcional extremo, que depois desenvolvo em mais detalhes. Diversos detalhes técnicos são discutidos e exemplos são apresentados. Após uma breve discussão das teorias de campo conformes com fronteiras, eu aplico métodos numéricos para encontrar restrições no espectro do modelo de Ising em 3D. Outra aplicação é apresentada em que eu estudo a função de 4 pontos na fronteira de uma teoria particular no espaço Anti-de-Sitter, a fim de aproximar o espectro de massa da teoria.Biblioteca Digitais de Teses e Dissertações da USPTrancanelli, DiegoMeinke, Alexander2018-11-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-26112018-120129/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-04-10T00:06:19Zoai:teses.usp.br:tde-26112018-120129Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-10T00:06:19Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Applications of the Extremal Functional Bootstrap
Aplicações do Bootstrap Funcional Extremo
title Applications of the Extremal Functional Bootstrap
spellingShingle Applications of the Extremal Functional Bootstrap
Meinke, Alexander
Bootstrap
Bootstrap
Conformal Invariants
Critical Exponent
Expoente crítico
Invariânçia de escala
Invariantes conformes
Mecânica estatística
Phase Transition
Scale Invariance
Statistical Mechanics
Transição de fase
title_short Applications of the Extremal Functional Bootstrap
title_full Applications of the Extremal Functional Bootstrap
title_fullStr Applications of the Extremal Functional Bootstrap
title_full_unstemmed Applications of the Extremal Functional Bootstrap
title_sort Applications of the Extremal Functional Bootstrap
author Meinke, Alexander
author_facet Meinke, Alexander
author_role author
dc.contributor.none.fl_str_mv Trancanelli, Diego
dc.contributor.author.fl_str_mv Meinke, Alexander
dc.subject.por.fl_str_mv Bootstrap
Bootstrap
Conformal Invariants
Critical Exponent
Expoente crítico
Invariânçia de escala
Invariantes conformes
Mecânica estatística
Phase Transition
Scale Invariance
Statistical Mechanics
Transição de fase
topic Bootstrap
Bootstrap
Conformal Invariants
Critical Exponent
Expoente crítico
Invariânçia de escala
Invariantes conformes
Mecânica estatística
Phase Transition
Scale Invariance
Statistical Mechanics
Transição de fase
description The study of conformal symmetry is motivated through an example in statistical mechanics and then rigorously developed in quantum field theories in general spatial dimensions. In particular, primary fields are introduced as the fundamental objects of such theories and then studied in the formalism of radial quantization. The implications of conformal invariance on the functional form of correlation functions are studied in detail. Conformal blocks are defined and various approaches to their analytical and numerical calculation are presented with a special emphasis on the one-dimensional case. Building on these preliminaries, a modern formulation of the conformal bootstrap program and its various extensions are discussed. Examples are given in which bounds on the scaling dimensions in a one-dimensional theory are derived numerically. Using these results I motivate the technique of using the extremal functional bootstrap which I then develop in more detail. Many technical details are discussed and examples shown. After a brief discussion of conformal field theories with a boundary I apply numerical methods to find constraints on the spectrum of the 3D Ising model. Another application is presented in which I study the 4-point function on the boundary of a particular theory in Anti-de-Sitter space in order to approximate the mass spectrum of the theory.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26112018-120129/
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26112018-120129/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258489196380160