Smart polymers: use of conjugated polymers in computing tasks
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/76/76133/tde-02042025-094445/ |
Resumo: | Reservoir computing (RC) has emerged as a promising neuromorphic computing paradigm, leveraging the dynamic properties of physical systems for efficient temporal data processing. Electrically conductive polymers (ECPs) offer a unique platform for implementing RC due to their tunable electrical conductivity and ability to undergo dynamic charge transport processes, both phenomenons that can be harnesses to generate non-linear behaviors, key feature of RC. These materials enable the development of energy-efficient, flexible, and scalable reservoir systems, particularly for edge computing applications. In this work, the EDOT monomer is polymerized into a PEDOT based polymer to use in building a physical reservoir .Using a PEDOT based reservoir, we demonstrate its capability in classification tasks, specifically applied to the Iris dataset, showcasing its potential for nonlinear pattern recognition, achieving a classification accuracy of 60%. Beyond their role in reservoir computing, materials exhibiting negative differential resistance (NDR) present exciting opportunities for logic-based computing architectures. NDR, characterized by a decrease in current with increasing voltage in specific regions of a materials I-V curve, enables the implementation of bistable and multi stable electronic states essential for logic gate operations. Conducting polymers, including PEDOT:PSS, can be engineered to exhibit NDR behavior through controlled doping, electrochemical modulation, or nanoscale structuring. By harnessing this property, ECPs could serve as reconfigurable logic elements, enabling novel in-memory computing paradigms and compact, low-power logic circuits. In this work, a physical device composed of eight gold (Au) electrodes was assembled with PEDOT:PSS as the conductive layer in two different designs, vertical and planar. NDR behavior was sought in those designs and , once found it, it was used to solve a XOR classification task. Only the planar design was able to solve the task, although being an unstable solution, since the polymer degrades during the processing of the task. The synergy between RC and NDR-based logic could pave the way for advanced, adaptive computing systems, bridging the gap between neuromorphic processing and unconventional logic devices. |
| id |
USP_b33022a4c3c67bae205f1807bd249139 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-02042025-094445 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Smart polymers: use of conjugated polymers in computing tasksPolímeros inteligentes: uso de polímeros conjugados em tarefas computacionaisComputaçãoComputingLogic gatePEDOTPEDOTPorta lógicaReservatórioReservoirReservoir computing (RC) has emerged as a promising neuromorphic computing paradigm, leveraging the dynamic properties of physical systems for efficient temporal data processing. Electrically conductive polymers (ECPs) offer a unique platform for implementing RC due to their tunable electrical conductivity and ability to undergo dynamic charge transport processes, both phenomenons that can be harnesses to generate non-linear behaviors, key feature of RC. These materials enable the development of energy-efficient, flexible, and scalable reservoir systems, particularly for edge computing applications. In this work, the EDOT monomer is polymerized into a PEDOT based polymer to use in building a physical reservoir .Using a PEDOT based reservoir, we demonstrate its capability in classification tasks, specifically applied to the Iris dataset, showcasing its potential for nonlinear pattern recognition, achieving a classification accuracy of 60%. Beyond their role in reservoir computing, materials exhibiting negative differential resistance (NDR) present exciting opportunities for logic-based computing architectures. NDR, characterized by a decrease in current with increasing voltage in specific regions of a materials I-V curve, enables the implementation of bistable and multi stable electronic states essential for logic gate operations. Conducting polymers, including PEDOT:PSS, can be engineered to exhibit NDR behavior through controlled doping, electrochemical modulation, or nanoscale structuring. By harnessing this property, ECPs could serve as reconfigurable logic elements, enabling novel in-memory computing paradigms and compact, low-power logic circuits. In this work, a physical device composed of eight gold (Au) electrodes was assembled with PEDOT:PSS as the conductive layer in two different designs, vertical and planar. NDR behavior was sought in those designs and , once found it, it was used to solve a XOR classification task. Only the planar design was able to solve the task, although being an unstable solution, since the polymer degrades during the processing of the task. The synergy between RC and NDR-based logic could pave the way for advanced, adaptive computing systems, bridging the gap between neuromorphic processing and unconventional logic devices.A computação de reservatório (RC) surgiu como um paradigma promissor de computação neuromórfica, alavancando as propriedades dinâmicas de sistemas físicos para processamento eficiente de dados temporais. Polímeros eletricamente condutores (PECs) oferecem uma plataforma única para implementar RC devido à sua condutividade elétrica ajustável e capacidade de passar por processos dinâmicos de transporte de carga, ambos fenômenos que podem ser aproveitados para gerar comportamentos não lineares, característica fundamental da RC. Esses materiais permitem o desenvolvimento de sistemas de reservatórios energeticamente eficientes, flexíveis e escaláveis, particularmente para aplicações de computação de ponta. Neste trabalho, o monômero EDOT é polimerizado em um polímero baseado em PEDOT para uso na construção de um reservatório físico. Usando um reservatório baseado em PEDOT, demonstramos sua capacidade em tarefas de classificação, especificamente aplicadas ao conjunto de dados Iris, mostrando seu potencial para reconhecimento de padrões não lineares, alcançando uma precisão de classificação de 60%. Além de seu papel na computação de reservatório, materiais que exibem resistência diferencial negativa (RDN) apresentam oportunidades interessantes para arquiteturas de computação baseadas em lógica.RDN, caracterizado por uma diminuição na corrente com o aumento da voltagem em regiões específicas da curva I-V de um material, permite a implementação de estados eletrônicos biestáveis e multiestáveis essenciais para operações de portas lógicas. Polímeros condutores, incluindo PEDOT:PSS, podem ser projetados para exibir comportamento NDR por meio de dopagem controlada, modulação eletroquímica ou estruturação em nanoescala. Ao aproveitar essa propriedade, os PECs podem servir como elementos lógicos reconfiguráveis, permitindo novos paradigmas de computação na memória e circuitos lógicos compactos e de baixo consumo. Neste trabalho, um dispositivo físico composto de oito eletrodos de ouro (Au) foi montado com PEDOT:PSS como camada condutora em dois designs diferentes, vertical e planar. O comportamento RDN foi buscado nesses designs e, uma vez encontrado, foi usado para resolver uma tarefa de classificação XOR. Apenas o design planar foi capaz de resolver a tarefa, embora seja uma solução instável, uma vez que o polímero se degrada durante o processamento da tarefa. A sinergia entre a lógica baseada em RC e RDN pode abrir caminho para sistemas de computação avançados e adaptativos, preenchendo a lacuna entre o processamento neuromórfico e os dispositivos lógicos não convencionais.Biblioteca Digitais de Teses e Dissertações da USPFaria, Gregório CoutoTorres, Bruno Bassi MillanSouza, Rafael Francisco Santiago de2025-03-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76133/tde-02042025-094445/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-04-09T14:02:04Zoai:teses.usp.br:tde-02042025-094445Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-04-09T14:02:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Smart polymers: use of conjugated polymers in computing tasks Polímeros inteligentes: uso de polímeros conjugados em tarefas computacionais |
| title |
Smart polymers: use of conjugated polymers in computing tasks |
| spellingShingle |
Smart polymers: use of conjugated polymers in computing tasks Souza, Rafael Francisco Santiago de Computação Computing Logic gate PEDOT PEDOT Porta lógica Reservatório Reservoir |
| title_short |
Smart polymers: use of conjugated polymers in computing tasks |
| title_full |
Smart polymers: use of conjugated polymers in computing tasks |
| title_fullStr |
Smart polymers: use of conjugated polymers in computing tasks |
| title_full_unstemmed |
Smart polymers: use of conjugated polymers in computing tasks |
| title_sort |
Smart polymers: use of conjugated polymers in computing tasks |
| author |
Souza, Rafael Francisco Santiago de |
| author_facet |
Souza, Rafael Francisco Santiago de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Faria, Gregório Couto Torres, Bruno Bassi Millan |
| dc.contributor.author.fl_str_mv |
Souza, Rafael Francisco Santiago de |
| dc.subject.por.fl_str_mv |
Computação Computing Logic gate PEDOT PEDOT Porta lógica Reservatório Reservoir |
| topic |
Computação Computing Logic gate PEDOT PEDOT Porta lógica Reservatório Reservoir |
| description |
Reservoir computing (RC) has emerged as a promising neuromorphic computing paradigm, leveraging the dynamic properties of physical systems for efficient temporal data processing. Electrically conductive polymers (ECPs) offer a unique platform for implementing RC due to their tunable electrical conductivity and ability to undergo dynamic charge transport processes, both phenomenons that can be harnesses to generate non-linear behaviors, key feature of RC. These materials enable the development of energy-efficient, flexible, and scalable reservoir systems, particularly for edge computing applications. In this work, the EDOT monomer is polymerized into a PEDOT based polymer to use in building a physical reservoir .Using a PEDOT based reservoir, we demonstrate its capability in classification tasks, specifically applied to the Iris dataset, showcasing its potential for nonlinear pattern recognition, achieving a classification accuracy of 60%. Beyond their role in reservoir computing, materials exhibiting negative differential resistance (NDR) present exciting opportunities for logic-based computing architectures. NDR, characterized by a decrease in current with increasing voltage in specific regions of a materials I-V curve, enables the implementation of bistable and multi stable electronic states essential for logic gate operations. Conducting polymers, including PEDOT:PSS, can be engineered to exhibit NDR behavior through controlled doping, electrochemical modulation, or nanoscale structuring. By harnessing this property, ECPs could serve as reconfigurable logic elements, enabling novel in-memory computing paradigms and compact, low-power logic circuits. In this work, a physical device composed of eight gold (Au) electrodes was assembled with PEDOT:PSS as the conductive layer in two different designs, vertical and planar. NDR behavior was sought in those designs and , once found it, it was used to solve a XOR classification task. Only the planar design was able to solve the task, although being an unstable solution, since the polymer degrades during the processing of the task. The synergy between RC and NDR-based logic could pave the way for advanced, adaptive computing systems, bridging the gap between neuromorphic processing and unconventional logic devices. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-03-14 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/76/76133/tde-02042025-094445/ |
| url |
https://www.teses.usp.br/teses/disponiveis/76/76133/tde-02042025-094445/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1839839136049004544 |