Detecção de patologias em plantações de eucaliptos com aprendizado de máquina

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Oliveira, Matheus Della Croce
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-23112016-085907/
Resumo: As plantações de eucaliptos representam grande potencial econômico para a indústria de papel, celulose, entre outras, além de apresentar uma série de características positivas como alta produtividade, grande potencial de adaptação e ampla diversidade de espécies. Em consequência a tais vantagens, há décadas diversas pesquisas vem sendo realizadas com o intuito de monitorar e detectar diversas doenças que aferem este tipo de cultura. O monitoramento rápido das doenças em eucaliptos torna-se um requisito para evitar grandes perdas econômicas. Neste projeto de pesquisa utilizou-se imagens aéreas obtidas por VANTs (Veículos Aéreos Não-Tripulados) para detectar um tipo específico de estresse que afeta as plantações de eucaliptos: a Murcha de Ceratocyst is. Após rotular eucaliptos doentes e saudáveis e outras estruturas em imagens aéreas, técnicas de Aprendizado de Máquina Supervisionado foram desenvolvidas para generalizar o conhecimento e possibilitar uma rápida detecção através das imagens RGB e multiespectrais. Dentre as técnicas utilizadas, destacou-se a arquitetura de Redes Neurais Convolucional chamada de Custom- CNN, inspirada no modelo da tradicional arquitetura Lenet -5 agregando-se melhorias do estado-da-arte, como a camada convolucional 1x1. Na classificação do conjunto RGB, a Custom-CNN obteve o maior F-score, de 0,81, sendo que a técnica SVM-rbf obteve 0,67. No conjunto de dados com imagens multiespectrais, a Lenet -5 e a Custom-CNN at ingiram, respectivamente, 0,63 e 0,66 de F-score, enquanto o SVM-rbf obteve 0,46. Esta dissertação apresenta a metodologia utilizada para a classificação, elencando as principais características dos algoritmos utilizados, bem como os resultados experimentais obtidos. Há ainda uma aplicação do classificador Regressão Logística para o planejamento de trajetória com VANTs.
id USP_b646c7b0a57cc5c39f1ec7cf8b297b19
oai_identifier_str oai:teses.usp.br:tde-23112016-085907
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Detecção de patologias em plantações de eucaliptos com aprendizado de máquinaDetection of diseases in eucalyptus plantations with machine learningAerial image classificationAprendizado de máquinaClassificação em imagens aéreasImage processingMachine learningProcessamento de imagens.Remote sensingSensoriamento remotoUAVsVANTsAs plantações de eucaliptos representam grande potencial econômico para a indústria de papel, celulose, entre outras, além de apresentar uma série de características positivas como alta produtividade, grande potencial de adaptação e ampla diversidade de espécies. Em consequência a tais vantagens, há décadas diversas pesquisas vem sendo realizadas com o intuito de monitorar e detectar diversas doenças que aferem este tipo de cultura. O monitoramento rápido das doenças em eucaliptos torna-se um requisito para evitar grandes perdas econômicas. Neste projeto de pesquisa utilizou-se imagens aéreas obtidas por VANTs (Veículos Aéreos Não-Tripulados) para detectar um tipo específico de estresse que afeta as plantações de eucaliptos: a Murcha de Ceratocyst is. Após rotular eucaliptos doentes e saudáveis e outras estruturas em imagens aéreas, técnicas de Aprendizado de Máquina Supervisionado foram desenvolvidas para generalizar o conhecimento e possibilitar uma rápida detecção através das imagens RGB e multiespectrais. Dentre as técnicas utilizadas, destacou-se a arquitetura de Redes Neurais Convolucional chamada de Custom- CNN, inspirada no modelo da tradicional arquitetura Lenet -5 agregando-se melhorias do estado-da-arte, como a camada convolucional 1x1. Na classificação do conjunto RGB, a Custom-CNN obteve o maior F-score, de 0,81, sendo que a técnica SVM-rbf obteve 0,67. No conjunto de dados com imagens multiespectrais, a Lenet -5 e a Custom-CNN at ingiram, respectivamente, 0,63 e 0,66 de F-score, enquanto o SVM-rbf obteve 0,46. Esta dissertação apresenta a metodologia utilizada para a classificação, elencando as principais características dos algoritmos utilizados, bem como os resultados experimentais obtidos. Há ainda uma aplicação do classificador Regressão Logística para o planejamento de trajetória com VANTs.Eucalypt us plantations represent great economic potential for t he paper, pulp, among others, in addition to presenting a number of positive characteristics such as high productivity, great potential for adaptaion and wide diversity of species. In consequence of t hese advantages, there are several decades research has been conducted in order to monitor and detect various diseases that affect s this type of culture. The rapid monitoring of diseases in eucalyptus becomes a requirement to avoid major economic losses. In t his research project we used aerial images obtained by UAVs (Unmanned Aerial Vehicles) to detect an specific type of stress t hat a effect s eucalyptus plantations: the Ceratocyst is wilt . After labeling diseased eucalyptus, healthy eucalyptus and other structures in aerial images, Supervised Machine Learning techniques were developed to generalize knowledge and enable rapid detection through RGB and multispectral images. Among the techniques used, stood out t he Convolutional Neural Network architecture called Custom-CNN, that was inspired by the model of t raditional Lenet -5 architecture and with state-of-the-art improvements, such as t he 1x1 convolution layer. In t he classification of RGB dataset , the Custom-CNN obtained the highest F-score of 0.81, and SVM-RBF technique obtained 0.67. In t he dataset with multispectral images, Lenet -5 and Custom-CNN obtained, respectively, 0.63 and 0.66 of F-score, while SVM-rbf obtained 0.46. This paper presents the methodology used for classification, listing the main features of the algorithms and the experimental results. There is also an application of Logistic Regression classifier for path planning with UAVs.Biblioteca Digitais de Teses e Dissertações da USPWolf, Denis FernandoOliveira, Matheus Della Croce2016-06-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-23112016-085907/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:05:35Zoai:teses.usp.br:tde-23112016-085907Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:05:35Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Detecção de patologias em plantações de eucaliptos com aprendizado de máquina
Detection of diseases in eucalyptus plantations with machine learning
title Detecção de patologias em plantações de eucaliptos com aprendizado de máquina
spellingShingle Detecção de patologias em plantações de eucaliptos com aprendizado de máquina
Oliveira, Matheus Della Croce
Aerial image classification
Aprendizado de máquina
Classificação em imagens aéreas
Image processing
Machine learning
Processamento de imagens.
Remote sensing
Sensoriamento remoto
UAVs
VANTs
title_short Detecção de patologias em plantações de eucaliptos com aprendizado de máquina
title_full Detecção de patologias em plantações de eucaliptos com aprendizado de máquina
title_fullStr Detecção de patologias em plantações de eucaliptos com aprendizado de máquina
title_full_unstemmed Detecção de patologias em plantações de eucaliptos com aprendizado de máquina
title_sort Detecção de patologias em plantações de eucaliptos com aprendizado de máquina
author Oliveira, Matheus Della Croce
author_facet Oliveira, Matheus Della Croce
author_role author
dc.contributor.none.fl_str_mv Wolf, Denis Fernando
dc.contributor.author.fl_str_mv Oliveira, Matheus Della Croce
dc.subject.por.fl_str_mv Aerial image classification
Aprendizado de máquina
Classificação em imagens aéreas
Image processing
Machine learning
Processamento de imagens.
Remote sensing
Sensoriamento remoto
UAVs
VANTs
topic Aerial image classification
Aprendizado de máquina
Classificação em imagens aéreas
Image processing
Machine learning
Processamento de imagens.
Remote sensing
Sensoriamento remoto
UAVs
VANTs
description As plantações de eucaliptos representam grande potencial econômico para a indústria de papel, celulose, entre outras, além de apresentar uma série de características positivas como alta produtividade, grande potencial de adaptação e ampla diversidade de espécies. Em consequência a tais vantagens, há décadas diversas pesquisas vem sendo realizadas com o intuito de monitorar e detectar diversas doenças que aferem este tipo de cultura. O monitoramento rápido das doenças em eucaliptos torna-se um requisito para evitar grandes perdas econômicas. Neste projeto de pesquisa utilizou-se imagens aéreas obtidas por VANTs (Veículos Aéreos Não-Tripulados) para detectar um tipo específico de estresse que afeta as plantações de eucaliptos: a Murcha de Ceratocyst is. Após rotular eucaliptos doentes e saudáveis e outras estruturas em imagens aéreas, técnicas de Aprendizado de Máquina Supervisionado foram desenvolvidas para generalizar o conhecimento e possibilitar uma rápida detecção através das imagens RGB e multiespectrais. Dentre as técnicas utilizadas, destacou-se a arquitetura de Redes Neurais Convolucional chamada de Custom- CNN, inspirada no modelo da tradicional arquitetura Lenet -5 agregando-se melhorias do estado-da-arte, como a camada convolucional 1x1. Na classificação do conjunto RGB, a Custom-CNN obteve o maior F-score, de 0,81, sendo que a técnica SVM-rbf obteve 0,67. No conjunto de dados com imagens multiespectrais, a Lenet -5 e a Custom-CNN at ingiram, respectivamente, 0,63 e 0,66 de F-score, enquanto o SVM-rbf obteve 0,46. Esta dissertação apresenta a metodologia utilizada para a classificação, elencando as principais características dos algoritmos utilizados, bem como os resultados experimentais obtidos. Há ainda uma aplicação do classificador Regressão Logística para o planejamento de trajetória com VANTs.
publishDate 2016
dc.date.none.fl_str_mv 2016-06-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-23112016-085907/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-23112016-085907/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258481002807296