Conjuntos K de redes neurais e sua aplicação na classificação de imagética motora
| Ano de defesa: | 2014 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-10022015-203830/ |
Resumo: | Esta dissertação de mestrado tem por objetivo analisar os conjuntos-K, uma hierarquia de redes neurais biologicamente mais plausíveis, e aplicá-los ao problema de classificação de imagética motora através do eletroencefalograma (EEG). A imagética motora consiste no ato de processar um movimento motor da memória humana de longo tempo para a memória de curto prazo. A imagética motora deixa um rastro no sinal do EEG que torna possível a identificação e classificação dos diferentes movimentos motores. A tarefa de classificação de imagética motora através do EEG é reconhecida como complexa devido à não linearidade e quantidade de ruído da série temporal do EEG e da pequena quantidade de dados disponíveis para aprendizagem. Os conjuntos-K são um modelo conexionista que simula o comportamento dinâmico e caótico de populações de neurônios do cérebro e foram modelados com base em observações do sistema olfatório feitas por Walter Freeman. Os conjuntos-K já foram aplicados em diversos domínios de classificação diferentes, incluindo EEG, tendo demonstrado bons resultados. Devido às características da classificação de imagética motora, levantou-se a hipótese de que a aplicação dos conjuntos-K na tarefa pudesse prover bons resultados. Um simulador para os conjuntos-K foi construído para a realização dos experimentos. Não foi possível validar a hipótese levantada no trabalho, dado que os resultados dos experimentos realizados com conjuntos-K e imagética motora não apresentaram melhorias significativas para a tarefa nas comparações realizadas. |
| id |
USP_b8fd6cd38af6551588df73e17cb88995 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-10022015-203830 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Conjuntos K de redes neurais e sua aplicação na classificação de imagética motoraK-sets of neural networks and its application on motor imagery classificationArtificial neural networksBrain-computer interfacesConjuntos-KElectroencephalogramEletroencefalogramaInterface cérebro-computadorK-setsRedes neurais artificiaisEsta dissertação de mestrado tem por objetivo analisar os conjuntos-K, uma hierarquia de redes neurais biologicamente mais plausíveis, e aplicá-los ao problema de classificação de imagética motora através do eletroencefalograma (EEG). A imagética motora consiste no ato de processar um movimento motor da memória humana de longo tempo para a memória de curto prazo. A imagética motora deixa um rastro no sinal do EEG que torna possível a identificação e classificação dos diferentes movimentos motores. A tarefa de classificação de imagética motora através do EEG é reconhecida como complexa devido à não linearidade e quantidade de ruído da série temporal do EEG e da pequena quantidade de dados disponíveis para aprendizagem. Os conjuntos-K são um modelo conexionista que simula o comportamento dinâmico e caótico de populações de neurônios do cérebro e foram modelados com base em observações do sistema olfatório feitas por Walter Freeman. Os conjuntos-K já foram aplicados em diversos domínios de classificação diferentes, incluindo EEG, tendo demonstrado bons resultados. Devido às características da classificação de imagética motora, levantou-se a hipótese de que a aplicação dos conjuntos-K na tarefa pudesse prover bons resultados. Um simulador para os conjuntos-K foi construído para a realização dos experimentos. Não foi possível validar a hipótese levantada no trabalho, dado que os resultados dos experimentos realizados com conjuntos-K e imagética motora não apresentaram melhorias significativas para a tarefa nas comparações realizadas.This dissertation aims to examine the K-sets, a hierarchy of biologically plausible neural networks, and apply them to the problem of motor imagery classification through electroencephalogram (EEG). Motor imagery is the act of processing a motor movement from long-term to short-term memory. Motor imagery leaves a trail in the EEG signal, which makes possible the identification and classification of different motor movements. Motor imagery classification is a complex problem due to non-linearity of the EEG time series, low signal-to-noise ratio, and the small amount of data typically available for learning. K-sets are a connectionist model that simulates the dynamic and chaotic behavior of populations of neurons in the brain, modeled based on observations of the olfactory system by Walter Freeman. K-sets have already been used in several different classification domains, including EEG, showing good results. Due to the characteristics of motor imagery classification, a hypothesis that the application of K-sets in the task could provide good results was raised. A simulator for K-sets was created for the experiments. Unfortunately, the hypothesis could not be validated, as the results of the conducted experiments with K-sets and motor imagery showed no significant improvements in comparison in the task performed.Biblioteca Digitais de Teses e Dissertações da USPRosa, João Luis GarciaPiazentin, Denis Renato de Moraes2014-10-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-10022015-203830/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:56Zoai:teses.usp.br:tde-10022015-203830Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:56Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Conjuntos K de redes neurais e sua aplicação na classificação de imagética motora K-sets of neural networks and its application on motor imagery classification |
| title |
Conjuntos K de redes neurais e sua aplicação na classificação de imagética motora |
| spellingShingle |
Conjuntos K de redes neurais e sua aplicação na classificação de imagética motora Piazentin, Denis Renato de Moraes Artificial neural networks Brain-computer interfaces Conjuntos-K Electroencephalogram Eletroencefalograma Interface cérebro-computador K-sets Redes neurais artificiais |
| title_short |
Conjuntos K de redes neurais e sua aplicação na classificação de imagética motora |
| title_full |
Conjuntos K de redes neurais e sua aplicação na classificação de imagética motora |
| title_fullStr |
Conjuntos K de redes neurais e sua aplicação na classificação de imagética motora |
| title_full_unstemmed |
Conjuntos K de redes neurais e sua aplicação na classificação de imagética motora |
| title_sort |
Conjuntos K de redes neurais e sua aplicação na classificação de imagética motora |
| author |
Piazentin, Denis Renato de Moraes |
| author_facet |
Piazentin, Denis Renato de Moraes |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Rosa, João Luis Garcia |
| dc.contributor.author.fl_str_mv |
Piazentin, Denis Renato de Moraes |
| dc.subject.por.fl_str_mv |
Artificial neural networks Brain-computer interfaces Conjuntos-K Electroencephalogram Eletroencefalograma Interface cérebro-computador K-sets Redes neurais artificiais |
| topic |
Artificial neural networks Brain-computer interfaces Conjuntos-K Electroencephalogram Eletroencefalograma Interface cérebro-computador K-sets Redes neurais artificiais |
| description |
Esta dissertação de mestrado tem por objetivo analisar os conjuntos-K, uma hierarquia de redes neurais biologicamente mais plausíveis, e aplicá-los ao problema de classificação de imagética motora através do eletroencefalograma (EEG). A imagética motora consiste no ato de processar um movimento motor da memória humana de longo tempo para a memória de curto prazo. A imagética motora deixa um rastro no sinal do EEG que torna possível a identificação e classificação dos diferentes movimentos motores. A tarefa de classificação de imagética motora através do EEG é reconhecida como complexa devido à não linearidade e quantidade de ruído da série temporal do EEG e da pequena quantidade de dados disponíveis para aprendizagem. Os conjuntos-K são um modelo conexionista que simula o comportamento dinâmico e caótico de populações de neurônios do cérebro e foram modelados com base em observações do sistema olfatório feitas por Walter Freeman. Os conjuntos-K já foram aplicados em diversos domínios de classificação diferentes, incluindo EEG, tendo demonstrado bons resultados. Devido às características da classificação de imagética motora, levantou-se a hipótese de que a aplicação dos conjuntos-K na tarefa pudesse prover bons resultados. Um simulador para os conjuntos-K foi construído para a realização dos experimentos. Não foi possível validar a hipótese levantada no trabalho, dado que os resultados dos experimentos realizados com conjuntos-K e imagética motora não apresentaram melhorias significativas para a tarefa nas comparações realizadas. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-10-13 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-10022015-203830/ |
| url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-10022015-203830/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258065632493568 |