Metasurfaces for photonic sensors applications

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Arruda, Guilherme Simoneti de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18155/tde-11082025-155639/
Resumo: Metasurfaces offer a novel approach for controlling and manipulating wave (e.g., light) beams and have found applications in various scientific areas, including sensing, imaging, augmented reality, and microscopy. They consist of an array of small resonators, known as meta-atoms, which control the amplitude and phase of the light beam. Photonic sensors are potential low-cost devices that allow for real time and in situ diagnosis (Point-of-Care devices), making them particularly appealing as diagnostics tools, especially in regions with inadequate healthcare and clinical laboratories. Metasurfaces have enormous potential to improve the performance of photonic sensors due to their ability to support electromagnetic resonances, which heavily depend on the surrounding media. Their promising sensing performance, compatibility with mass-production fabrication techniques and miniaturization capabilities make them ideal candidates for inexpensive Point-of-Care devices. However, the suitability of a sensing modality for streamline healthcare applications also depends on factors such as reproducibility, user-friendliness and cost. In particular, user-friendly, cost-effective sensors typically require using affordable materials and simple measuring techniques, which usually hinders the performance of the state-of-the art photonic sensors. This thesis proposes to quantify the impact of the most typical real-world application constraints associated with using low-cost compatible sensing devices, such as losses due to material absorption or surface scattering and misalignments between source and structure, on the sensing parameters of the metasurfaces, followed by design strategies to mitigate their impact. First, a model based on Temporal Coupled Mode Theory (TCMT) was derived to quantify the impact of the losses mechanisms on the Limit of Detection (LOD) (i.e., the minimum detectable measurand quantity) of photonic sensors. This model shows that the LOD is inversely proportional to the amplitude of the metasurfaces resonance, and that this amplitude is more affected by losses than the resonances Quality Factor (Q-factor), which is commonly used to estimate the losses impact on the sensors LOD. The model also highlights the conditions for optimising the LOD of the device, which happens by counterbalancing the Q-factor and amplitude. Next, TCMT was used to quantify the angular (misalignment) tolerance of distributed resonances in metasurfaces that support both Bound States in the Continuum (BICs), which are of great scientific interest due to their high Q-factor (high-Q) resonances, and Guided Mode Resonances (GMRs), which offers promising sensibility and are compatible with low-cost measurement systems. It was found that BICs are quite intolerant to misalignments between the metasurface and the source. Alternatively, a design strategy based on Fourier engineered metasurfaces supporting GMRs was proposed. The suggested structure features higher angular tolerance due to band planarisation, while still sharing the high-Q advantage of the BICs, thus offering a viable route towards high-Q resonances that are more suitable for applications. Afterwards, the concept of air-guided mode resonances (AGMRs) with Fourier control of the Q-factor was introduced. On the one hand, air modes can significantly improve the performance and functionality of metasurfaces, for example, by enhancing mode sensitivity and reducing material absorption. On the other hand, metasurfaces consisting of an array of double ridges can be Fourier engineered to support high-Q GMRs which are confined in air, thus supporting an AGMR. It was then experimentally demonstrated how to employ this design strategy to enhance the Q-factor of metasurfaces made of lossy materials. In particular, we demonstrated a Q-factor enhancement of 3.3x for resonances in the microwave regime, with potential for even better improvements depending on the application. A noteworthy acquired insight is that using the Fourier engineered metasurface is a mandatory requirement for exciting AGMRs, since regular gratings do not meet the criteria to support such modes. Subsequently, the idea of Fourier engineered metasurfaces supporting AGMRs was extended to structures consisting of a periodic array of dimer pillars, which supports resonances with electric field spatially localised outside the dielectric pillars (similar to the double ridge AGMR), and its suitability for improving the performance of photonics sensors was experimentally assessed. It was found that the resonances supported by the dimer structure have a sensing Figure of Merit (FOM) of one order of magnitude higher than that of resonances from structures supporting conventional GMRs, surface plasmons or even BICs. Also, an array of amorphous silicon (aSi) dimer pillars was fabricated and incorporated to a low-cost, user friendly photonic biosensing system that successfully measured the presence of tiny biomarkers of the Alzheimers disease (AD) at clinically relevant concentration levels (20 pg/ml) directly in human blood serum. Fourier engineering proved to be a valuable tool when designing metasurfaces, improving the performance of photonic sensors when appropriately used. The innovations presented in this theses make a major contribution in enhancing the capabilities of these devices.
id USP_bc0067f42c6e3652ddf97ea27258e20d
oai_identifier_str oai:teses.usp.br:tde-11082025-155639
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Metasurfaces for photonic sensors applicationsMetassuperfíecies para aplicações em sensores fotônicosbiosensoresbiosensorsbound states in the continuumbound states in the continuumFourier propertiesguided mode resonanceshigh-Q modesmetassuperfíciesmetasurfacesmodos de alto-Qphotonic sensorspropriedades de Fourierressonâncias de modo guiadosensores fotônicostemporal coupled mode theoryteoria de modos temporalmente acopladosMetasurfaces offer a novel approach for controlling and manipulating wave (e.g., light) beams and have found applications in various scientific areas, including sensing, imaging, augmented reality, and microscopy. They consist of an array of small resonators, known as meta-atoms, which control the amplitude and phase of the light beam. Photonic sensors are potential low-cost devices that allow for real time and in situ diagnosis (Point-of-Care devices), making them particularly appealing as diagnostics tools, especially in regions with inadequate healthcare and clinical laboratories. Metasurfaces have enormous potential to improve the performance of photonic sensors due to their ability to support electromagnetic resonances, which heavily depend on the surrounding media. Their promising sensing performance, compatibility with mass-production fabrication techniques and miniaturization capabilities make them ideal candidates for inexpensive Point-of-Care devices. However, the suitability of a sensing modality for streamline healthcare applications also depends on factors such as reproducibility, user-friendliness and cost. In particular, user-friendly, cost-effective sensors typically require using affordable materials and simple measuring techniques, which usually hinders the performance of the state-of-the art photonic sensors. This thesis proposes to quantify the impact of the most typical real-world application constraints associated with using low-cost compatible sensing devices, such as losses due to material absorption or surface scattering and misalignments between source and structure, on the sensing parameters of the metasurfaces, followed by design strategies to mitigate their impact. First, a model based on Temporal Coupled Mode Theory (TCMT) was derived to quantify the impact of the losses mechanisms on the Limit of Detection (LOD) (i.e., the minimum detectable measurand quantity) of photonic sensors. This model shows that the LOD is inversely proportional to the amplitude of the metasurfaces resonance, and that this amplitude is more affected by losses than the resonances Quality Factor (Q-factor), which is commonly used to estimate the losses impact on the sensors LOD. The model also highlights the conditions for optimising the LOD of the device, which happens by counterbalancing the Q-factor and amplitude. Next, TCMT was used to quantify the angular (misalignment) tolerance of distributed resonances in metasurfaces that support both Bound States in the Continuum (BICs), which are of great scientific interest due to their high Q-factor (high-Q) resonances, and Guided Mode Resonances (GMRs), which offers promising sensibility and are compatible with low-cost measurement systems. It was found that BICs are quite intolerant to misalignments between the metasurface and the source. Alternatively, a design strategy based on Fourier engineered metasurfaces supporting GMRs was proposed. The suggested structure features higher angular tolerance due to band planarisation, while still sharing the high-Q advantage of the BICs, thus offering a viable route towards high-Q resonances that are more suitable for applications. Afterwards, the concept of air-guided mode resonances (AGMRs) with Fourier control of the Q-factor was introduced. On the one hand, air modes can significantly improve the performance and functionality of metasurfaces, for example, by enhancing mode sensitivity and reducing material absorption. On the other hand, metasurfaces consisting of an array of double ridges can be Fourier engineered to support high-Q GMRs which are confined in air, thus supporting an AGMR. It was then experimentally demonstrated how to employ this design strategy to enhance the Q-factor of metasurfaces made of lossy materials. In particular, we demonstrated a Q-factor enhancement of 3.3x for resonances in the microwave regime, with potential for even better improvements depending on the application. A noteworthy acquired insight is that using the Fourier engineered metasurface is a mandatory requirement for exciting AGMRs, since regular gratings do not meet the criteria to support such modes. Subsequently, the idea of Fourier engineered metasurfaces supporting AGMRs was extended to structures consisting of a periodic array of dimer pillars, which supports resonances with electric field spatially localised outside the dielectric pillars (similar to the double ridge AGMR), and its suitability for improving the performance of photonics sensors was experimentally assessed. It was found that the resonances supported by the dimer structure have a sensing Figure of Merit (FOM) of one order of magnitude higher than that of resonances from structures supporting conventional GMRs, surface plasmons or even BICs. Also, an array of amorphous silicon (aSi) dimer pillars was fabricated and incorporated to a low-cost, user friendly photonic biosensing system that successfully measured the presence of tiny biomarkers of the Alzheimers disease (AD) at clinically relevant concentration levels (20 pg/ml) directly in human blood serum. Fourier engineering proved to be a valuable tool when designing metasurfaces, improving the performance of photonic sensors when appropriately used. The innovations presented in this theses make a major contribution in enhancing the capabilities of these devices.Metassuperfícies oferecem uma abordagem inovadora para controlar e manipular feixes de onda (e.g., luz) e encontraram aplicações em várias áreas científicas, incluindo sensoriamento, formação de imagens, realidade aumentada e microscopia. Elas consistem em um arranjo de pequenos ressonadores, conhecidos como meta-átomos, que controlam a amplitude e a fase do feixe de luz. Sensores fotônicos são dispositivos de baixo custo em potencial que permitem diagnósticos em tempo real e in situ (dispositivos Point-of-Care), tornando-os cruciais para a medicina, especialmente em regiões com cuidados de saúde inadequados e laboratórios clínicos precários. As metassuperfícies têm um enorme potencial para melhorar o desempenho dos sensores fotônicos devido à sua capacidade de suportar ressonâncias eletromagnéticas, que dependem do meio em que o sensor está inserido. O seu desempenho de detecção promissor, a sua compatibilidade com técnicas de fabricação em larga escala e a sua capacidade de miniaturização tornam metassuperfícies candidatas ideais para dispositivos Point-of-Care de baixo custo. No entanto, a adequação de uma modalidade de sensoriamento para aplicações na área da saúde também depende de fatores como reprodutibilidade, facilidade de uso e custo. Em especial, sensores fáceis de usar e com bom custo-benefício geralmente requerem o uso de materiais acessíveis e técnicas de medição simples, o que normalmente prejudica o desempenho dos sensores fotônicos do estado da arte. Esta tese propõe quantificar o impacto das limitações de aplicações no mundo real, como perdas devido a absorção ou espalhamento e desalinhamentos entre fonte e estrutura, nos parâmetros de sensibilidade das metassuperfícies, seguido de estratégias de design para mitigar seu impacto. Primeiro, um modelo baseado na Teoria de Modos Temporalmente Acoplados (TCMT) foi derivado para quantificar o impacto dos mecanismos de perda no Limite de Detecção (LOD) (ou seja, a quantidade mínima detectável) dos sensores fotônicos. Este modelo mostra que o LOD é inversamente proporcional à amplitude da ressonância da metassuperfície e que esta amplitude é mais afetada por perdas do que o Fator de Qualidade (Q-factor) da ressonância, que é comumente usado para estimar o impacto das perdas no LOD do sensor. O modelo também destaca as condições para otimizar o LOD do dispositivo, que ocorre equilibrando o Q-factor e a amplitude. Em seguida, TCMT foi novamente utilizada para quantificar a tolerância angular (desalinhamento) de ressonâncias distribuídas em metassuperfícies que suportam tanto os Bound States in the Continuum (BICs), que são de grande interesse científico devido às suas ressonâncias de alto Q-factor (alto-Q), quanto as Ressonâncias de Modo Guiado (GMRs), que oferecem sensibilidade promissora e são compatíveis com sistemas de medição de baixo custo. Foi constatado que os BICs são bastante intolerantes a desalinhamentos entre a metassuperfície e a fonte. Como alternativa, foi proposta uma estratégia de projeto baseada na engenharia de Fourier de uma metassuperfície que suporta GMRs. A estrutura sugerida apresenta uma maior tolerância angular devido à planarização da banda, enquanto ainda compartilha a vantagem de alto-Q dos BICs, e, portanto, oferece um caminho viável para a obtenção de ressonâncias de alto-Q que sejam mais adequadas para aplicações no mundo real. Na sequência, introduziu-se o conceito de Ressonâncias de Modo Guiado confinadas no Ar (AGMRs) com controle de Fourier sobre o seu Q-factor. Por um lado, modos confinados no ar podem melhorar significantemene o desempenho e a funcionalidade de metassuperfícies, por exemplo, aumentando a sensibilidade do modo e reduzindo absorção pelo material. Por outro lado, metassuperfícies constituídas de um arranjo periódico de fendas duplas podem ser projetadas via engenharia de Fourier para suportar GMRs de alto-Q que estão confinadas no ar, suportando, assim, uma AGMR. Foi demonstrado, então, como implementar essa estratégia para melhorar o Q-factor de metassuperfícies feitas de materiais com alta perda por absorção. Em particular, foi demonstrado uma melhoria por um fator de 3.3x do Q-factor de ressonâncias medidas no regime de micro-ondas, podendo ser ainda maior para outras aplicações. Uma consequência notável desse estudo é a de que o uso de metassuperfícies projetadas via engenharia de Fourier é obrigatório para a excitação de AGMRs, uma vez que arranjos convencionais não suportam esses modos. Continuando, a ideia de metassuperfícies que suportam AGMRs via engenharia de Fourier foi estendida para estruturas constituídas por um arranjo periódico de pilares duplos, que suportam ressonâncias com distribuição de campo elétrico confinado externamente aos pilares (de uma forma similar às AGMRs suportadas pelas fendas duplas), e seu potencial em melhorar o desempenho de sensores fotônicos foi verificado experimentalmente. Averiguou-se que as ressonâncias suportadas pelas estrutura de pilares duplos possuem uma Figura de Mérito (FOM) para sensoriamento uma ordem de magnitude maior do que GMRs convencionais, plasmas de superfícies ou ainda BICs. Adicionalmente, um arranjo de pilares duplos de silício amorfo (aSi) foi fabricado e incorporado a um sistema fotônico de biosensoriamento de baixo custo e fácil uso, o qual foi capaz de medir a presença de biomarcardores minúsculos da doença de Alzheimer (AD) em níveis de concentração clinicamente relevantes (20 pg/ml) diretamente no soro do sangue humano. A engenharia de Fourier provou ser uma ferramenta valiosa para o projeto de metassuperfícies, aumentando o desempenho de sensores fotônicos quando usada de forma apropriada. As inovações presentes nesta tese são, portanto, uma grande contribuição para a melhoria das capacidades desses dispositivos.Biblioteca Digitais de Teses e Dissertações da USPMartins, Emiliano RezendeArruda, Guilherme Simoneti de2025-07-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18155/tde-11082025-155639/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-08-13T13:41:02Zoai:teses.usp.br:tde-11082025-155639Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-08-13T13:41:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Metasurfaces for photonic sensors applications
Metassuperfíecies para aplicações em sensores fotônicos
title Metasurfaces for photonic sensors applications
spellingShingle Metasurfaces for photonic sensors applications
Arruda, Guilherme Simoneti de
biosensores
biosensors
bound states in the continuum
bound states in the continuum
Fourier properties
guided mode resonances
high-Q modes
metassuperfícies
metasurfaces
modos de alto-Q
photonic sensors
propriedades de Fourier
ressonâncias de modo guiado
sensores fotônicos
temporal coupled mode theory
teoria de modos temporalmente acoplados
title_short Metasurfaces for photonic sensors applications
title_full Metasurfaces for photonic sensors applications
title_fullStr Metasurfaces for photonic sensors applications
title_full_unstemmed Metasurfaces for photonic sensors applications
title_sort Metasurfaces for photonic sensors applications
author Arruda, Guilherme Simoneti de
author_facet Arruda, Guilherme Simoneti de
author_role author
dc.contributor.none.fl_str_mv Martins, Emiliano Rezende
dc.contributor.author.fl_str_mv Arruda, Guilherme Simoneti de
dc.subject.por.fl_str_mv biosensores
biosensors
bound states in the continuum
bound states in the continuum
Fourier properties
guided mode resonances
high-Q modes
metassuperfícies
metasurfaces
modos de alto-Q
photonic sensors
propriedades de Fourier
ressonâncias de modo guiado
sensores fotônicos
temporal coupled mode theory
teoria de modos temporalmente acoplados
topic biosensores
biosensors
bound states in the continuum
bound states in the continuum
Fourier properties
guided mode resonances
high-Q modes
metassuperfícies
metasurfaces
modos de alto-Q
photonic sensors
propriedades de Fourier
ressonâncias de modo guiado
sensores fotônicos
temporal coupled mode theory
teoria de modos temporalmente acoplados
description Metasurfaces offer a novel approach for controlling and manipulating wave (e.g., light) beams and have found applications in various scientific areas, including sensing, imaging, augmented reality, and microscopy. They consist of an array of small resonators, known as meta-atoms, which control the amplitude and phase of the light beam. Photonic sensors are potential low-cost devices that allow for real time and in situ diagnosis (Point-of-Care devices), making them particularly appealing as diagnostics tools, especially in regions with inadequate healthcare and clinical laboratories. Metasurfaces have enormous potential to improve the performance of photonic sensors due to their ability to support electromagnetic resonances, which heavily depend on the surrounding media. Their promising sensing performance, compatibility with mass-production fabrication techniques and miniaturization capabilities make them ideal candidates for inexpensive Point-of-Care devices. However, the suitability of a sensing modality for streamline healthcare applications also depends on factors such as reproducibility, user-friendliness and cost. In particular, user-friendly, cost-effective sensors typically require using affordable materials and simple measuring techniques, which usually hinders the performance of the state-of-the art photonic sensors. This thesis proposes to quantify the impact of the most typical real-world application constraints associated with using low-cost compatible sensing devices, such as losses due to material absorption or surface scattering and misalignments between source and structure, on the sensing parameters of the metasurfaces, followed by design strategies to mitigate their impact. First, a model based on Temporal Coupled Mode Theory (TCMT) was derived to quantify the impact of the losses mechanisms on the Limit of Detection (LOD) (i.e., the minimum detectable measurand quantity) of photonic sensors. This model shows that the LOD is inversely proportional to the amplitude of the metasurfaces resonance, and that this amplitude is more affected by losses than the resonances Quality Factor (Q-factor), which is commonly used to estimate the losses impact on the sensors LOD. The model also highlights the conditions for optimising the LOD of the device, which happens by counterbalancing the Q-factor and amplitude. Next, TCMT was used to quantify the angular (misalignment) tolerance of distributed resonances in metasurfaces that support both Bound States in the Continuum (BICs), which are of great scientific interest due to their high Q-factor (high-Q) resonances, and Guided Mode Resonances (GMRs), which offers promising sensibility and are compatible with low-cost measurement systems. It was found that BICs are quite intolerant to misalignments between the metasurface and the source. Alternatively, a design strategy based on Fourier engineered metasurfaces supporting GMRs was proposed. The suggested structure features higher angular tolerance due to band planarisation, while still sharing the high-Q advantage of the BICs, thus offering a viable route towards high-Q resonances that are more suitable for applications. Afterwards, the concept of air-guided mode resonances (AGMRs) with Fourier control of the Q-factor was introduced. On the one hand, air modes can significantly improve the performance and functionality of metasurfaces, for example, by enhancing mode sensitivity and reducing material absorption. On the other hand, metasurfaces consisting of an array of double ridges can be Fourier engineered to support high-Q GMRs which are confined in air, thus supporting an AGMR. It was then experimentally demonstrated how to employ this design strategy to enhance the Q-factor of metasurfaces made of lossy materials. In particular, we demonstrated a Q-factor enhancement of 3.3x for resonances in the microwave regime, with potential for even better improvements depending on the application. A noteworthy acquired insight is that using the Fourier engineered metasurface is a mandatory requirement for exciting AGMRs, since regular gratings do not meet the criteria to support such modes. Subsequently, the idea of Fourier engineered metasurfaces supporting AGMRs was extended to structures consisting of a periodic array of dimer pillars, which supports resonances with electric field spatially localised outside the dielectric pillars (similar to the double ridge AGMR), and its suitability for improving the performance of photonics sensors was experimentally assessed. It was found that the resonances supported by the dimer structure have a sensing Figure of Merit (FOM) of one order of magnitude higher than that of resonances from structures supporting conventional GMRs, surface plasmons or even BICs. Also, an array of amorphous silicon (aSi) dimer pillars was fabricated and incorporated to a low-cost, user friendly photonic biosensing system that successfully measured the presence of tiny biomarkers of the Alzheimers disease (AD) at clinically relevant concentration levels (20 pg/ml) directly in human blood serum. Fourier engineering proved to be a valuable tool when designing metasurfaces, improving the performance of photonic sensors when appropriately used. The innovations presented in this theses make a major contribution in enhancing the capabilities of these devices.
publishDate 2025
dc.date.none.fl_str_mv 2025-07-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18155/tde-11082025-155639/
url https://www.teses.usp.br/teses/disponiveis/18/18155/tde-11082025-155639/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1848370482670206976