Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/100/100132/tde-17022025-113828/ |
Resumo: | The networks have been the focus of intensive study in recent years, because of their flexibility and applicability in a wide range of fields. This thesis delves into the basic understanding of networks, especially those described as complex, to examine their role in the context of epidemiology. The structure of contact networks and time dependence in recovery rates are often referred as aspects that alter the dynamics of infectious disease transmission, but classical epidemiological models assume homogeneous mixing and constant recovery rates, which idealize real-world processes. To overcome these limitations, we address the impact of complex network topologies and variable recovery rates on epidemic dynamics using two statistically exact algorithms: the Gillespie algorithm and the Shortest-Path Kinetic Monte Carlo (SPKMC) algorithm. These methods were applied to the classic Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Removed (SIR) epidemiological models to simulate the disease spread under different network structures and recovery rates close to realistic ones. The analysis described here highlights how these factors shape infectious disease time series, yielding deeper insights into the interplay between network topology and recovery time distributions. |
| id |
USP_bf99847b74c5a7d72776821ce8873001 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-17022025-113828 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Computational Simulation of Epidemiological Models with Variable Rates on Complex NetworksSimulação Computacional de Modelos Epidemiológicos com Taxas Variáveis em Redes ComplexasAlgoritmo de GillespieEpidemiologiaEpidemiologyGillespie algorithmMarkov processModelo SIRModelo SISMonte Carlo cinético de caminho mais curtoNetworksProcessos de MarkovRedesShortest-Path Kinetic Monte CarloSIR modelSIS modelThe networks have been the focus of intensive study in recent years, because of their flexibility and applicability in a wide range of fields. This thesis delves into the basic understanding of networks, especially those described as complex, to examine their role in the context of epidemiology. The structure of contact networks and time dependence in recovery rates are often referred as aspects that alter the dynamics of infectious disease transmission, but classical epidemiological models assume homogeneous mixing and constant recovery rates, which idealize real-world processes. To overcome these limitations, we address the impact of complex network topologies and variable recovery rates on epidemic dynamics using two statistically exact algorithms: the Gillespie algorithm and the Shortest-Path Kinetic Monte Carlo (SPKMC) algorithm. These methods were applied to the classic Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Removed (SIR) epidemiological models to simulate the disease spread under different network structures and recovery rates close to realistic ones. The analysis described here highlights how these factors shape infectious disease time series, yielding deeper insights into the interplay between network topology and recovery time distributions.As redes têm sido o foco de estudos intensivos nos últimos anos devido à sua flexibilidade e aplicabilidade em uma ampla gama de áreas. Esta tese explora a compreensão básica das redes, especialmente aquelas descritas como complexas, para examinar seu papel no contexto da epidemiologia. A estrutura das redes de contato e a dependência temporal das taxas de recuperação são frequentemente apontadas como fatores que alteram a dinâmica da transmissão de doenças infecciosas, mas os modelos epidemiológicos clássicos assumem mistura homogênea e taxas de recuperação constantes, idealizando processos do mundo real. Para superar essas limitações, abordamos o impacto das topologias de redes complexas e das taxas de recuperação variáveis na dinâmica epidêmica, utilizando dois algoritmos estatisticamente exatos: o algoritmo de Gillespie e o algoritmo Shortest-Path Kinetic Monte Carlo (SPKMC). Esses métodos foram aplicados aos modelos epidemiológicos clássicos Suscetível-Infectado-Suscetível (SIS) e Suscetível-Infectado-Removido (SIR) para simular a propagação de doenças sob diferentes estruturas de rede e suposições realistas sobre as taxas de recuperação. A análise aqui descrita destaca como esses fatores moldam as séries temporais de doenças infecciosas, oferecendo uma compreensão mais profunda sobre a interação entre a topologia da rede e as distribuições de tempo de recuperação.Biblioteca Digitais de Teses e Dissertações da USPHase, Masayuki OkaCastro, Marcus André Nunes2024-12-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/100/100132/tde-17022025-113828/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-09-04T14:20:02Zoai:teses.usp.br:tde-17022025-113828Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-09-04T14:20:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks Simulação Computacional de Modelos Epidemiológicos com Taxas Variáveis em Redes Complexas |
| title |
Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks |
| spellingShingle |
Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks Castro, Marcus André Nunes Algoritmo de Gillespie Epidemiologia Epidemiology Gillespie algorithm Markov process Modelo SIR Modelo SIS Monte Carlo cinético de caminho mais curto Networks Processos de Markov Redes Shortest-Path Kinetic Monte Carlo SIR model SIS model |
| title_short |
Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks |
| title_full |
Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks |
| title_fullStr |
Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks |
| title_full_unstemmed |
Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks |
| title_sort |
Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks |
| author |
Castro, Marcus André Nunes |
| author_facet |
Castro, Marcus André Nunes |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Hase, Masayuki Oka |
| dc.contributor.author.fl_str_mv |
Castro, Marcus André Nunes |
| dc.subject.por.fl_str_mv |
Algoritmo de Gillespie Epidemiologia Epidemiology Gillespie algorithm Markov process Modelo SIR Modelo SIS Monte Carlo cinético de caminho mais curto Networks Processos de Markov Redes Shortest-Path Kinetic Monte Carlo SIR model SIS model |
| topic |
Algoritmo de Gillespie Epidemiologia Epidemiology Gillespie algorithm Markov process Modelo SIR Modelo SIS Monte Carlo cinético de caminho mais curto Networks Processos de Markov Redes Shortest-Path Kinetic Monte Carlo SIR model SIS model |
| description |
The networks have been the focus of intensive study in recent years, because of their flexibility and applicability in a wide range of fields. This thesis delves into the basic understanding of networks, especially those described as complex, to examine their role in the context of epidemiology. The structure of contact networks and time dependence in recovery rates are often referred as aspects that alter the dynamics of infectious disease transmission, but classical epidemiological models assume homogeneous mixing and constant recovery rates, which idealize real-world processes. To overcome these limitations, we address the impact of complex network topologies and variable recovery rates on epidemic dynamics using two statistically exact algorithms: the Gillespie algorithm and the Shortest-Path Kinetic Monte Carlo (SPKMC) algorithm. These methods were applied to the classic Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Removed (SIR) epidemiological models to simulate the disease spread under different network structures and recovery rates close to realistic ones. The analysis described here highlights how these factors shape infectious disease time series, yielding deeper insights into the interplay between network topology and recovery time distributions. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12-19 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/100/100132/tde-17022025-113828/ |
| url |
https://www.teses.usp.br/teses/disponiveis/100/100132/tde-17022025-113828/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1848370485578956800 |