Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Castro, Marcus André Nunes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/100/100132/tde-17022025-113828/
Resumo: The networks have been the focus of intensive study in recent years, because of their flexibility and applicability in a wide range of fields. This thesis delves into the basic understanding of networks, especially those described as complex, to examine their role in the context of epidemiology. The structure of contact networks and time dependence in recovery rates are often referred as aspects that alter the dynamics of infectious disease transmission, but classical epidemiological models assume homogeneous mixing and constant recovery rates, which idealize real-world processes. To overcome these limitations, we address the impact of complex network topologies and variable recovery rates on epidemic dynamics using two statistically exact algorithms: the Gillespie algorithm and the Shortest-Path Kinetic Monte Carlo (SPKMC) algorithm. These methods were applied to the classic Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Removed (SIR) epidemiological models to simulate the disease spread under different network structures and recovery rates close to realistic ones. The analysis described here highlights how these factors shape infectious disease time series, yielding deeper insights into the interplay between network topology and recovery time distributions.
id USP_bf99847b74c5a7d72776821ce8873001
oai_identifier_str oai:teses.usp.br:tde-17022025-113828
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Computational Simulation of Epidemiological Models with Variable Rates on Complex NetworksSimulação Computacional de Modelos Epidemiológicos com Taxas Variáveis em Redes ComplexasAlgoritmo de GillespieEpidemiologiaEpidemiologyGillespie algorithmMarkov processModelo SIRModelo SISMonte Carlo cinético de caminho mais curtoNetworksProcessos de MarkovRedesShortest-Path Kinetic Monte CarloSIR modelSIS modelThe networks have been the focus of intensive study in recent years, because of their flexibility and applicability in a wide range of fields. This thesis delves into the basic understanding of networks, especially those described as complex, to examine their role in the context of epidemiology. The structure of contact networks and time dependence in recovery rates are often referred as aspects that alter the dynamics of infectious disease transmission, but classical epidemiological models assume homogeneous mixing and constant recovery rates, which idealize real-world processes. To overcome these limitations, we address the impact of complex network topologies and variable recovery rates on epidemic dynamics using two statistically exact algorithms: the Gillespie algorithm and the Shortest-Path Kinetic Monte Carlo (SPKMC) algorithm. These methods were applied to the classic Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Removed (SIR) epidemiological models to simulate the disease spread under different network structures and recovery rates close to realistic ones. The analysis described here highlights how these factors shape infectious disease time series, yielding deeper insights into the interplay between network topology and recovery time distributions.As redes têm sido o foco de estudos intensivos nos últimos anos devido à sua flexibilidade e aplicabilidade em uma ampla gama de áreas. Esta tese explora a compreensão básica das redes, especialmente aquelas descritas como complexas, para examinar seu papel no contexto da epidemiologia. A estrutura das redes de contato e a dependência temporal das taxas de recuperação são frequentemente apontadas como fatores que alteram a dinâmica da transmissão de doenças infecciosas, mas os modelos epidemiológicos clássicos assumem mistura homogênea e taxas de recuperação constantes, idealizando processos do mundo real. Para superar essas limitações, abordamos o impacto das topologias de redes complexas e das taxas de recuperação variáveis na dinâmica epidêmica, utilizando dois algoritmos estatisticamente exatos: o algoritmo de Gillespie e o algoritmo Shortest-Path Kinetic Monte Carlo (SPKMC). Esses métodos foram aplicados aos modelos epidemiológicos clássicos Suscetível-Infectado-Suscetível (SIS) e Suscetível-Infectado-Removido (SIR) para simular a propagação de doenças sob diferentes estruturas de rede e suposições realistas sobre as taxas de recuperação. A análise aqui descrita destaca como esses fatores moldam as séries temporais de doenças infecciosas, oferecendo uma compreensão mais profunda sobre a interação entre a topologia da rede e as distribuições de tempo de recuperação.Biblioteca Digitais de Teses e Dissertações da USPHase, Masayuki OkaCastro, Marcus André Nunes2024-12-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/100/100132/tde-17022025-113828/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-09-04T14:20:02Zoai:teses.usp.br:tde-17022025-113828Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-09-04T14:20:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks
Simulação Computacional de Modelos Epidemiológicos com Taxas Variáveis em Redes Complexas
title Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks
spellingShingle Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks
Castro, Marcus André Nunes
Algoritmo de Gillespie
Epidemiologia
Epidemiology
Gillespie algorithm
Markov process
Modelo SIR
Modelo SIS
Monte Carlo cinético de caminho mais curto
Networks
Processos de Markov
Redes
Shortest-Path Kinetic Monte Carlo
SIR model
SIS model
title_short Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks
title_full Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks
title_fullStr Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks
title_full_unstemmed Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks
title_sort Computational Simulation of Epidemiological Models with Variable Rates on Complex Networks
author Castro, Marcus André Nunes
author_facet Castro, Marcus André Nunes
author_role author
dc.contributor.none.fl_str_mv Hase, Masayuki Oka
dc.contributor.author.fl_str_mv Castro, Marcus André Nunes
dc.subject.por.fl_str_mv Algoritmo de Gillespie
Epidemiologia
Epidemiology
Gillespie algorithm
Markov process
Modelo SIR
Modelo SIS
Monte Carlo cinético de caminho mais curto
Networks
Processos de Markov
Redes
Shortest-Path Kinetic Monte Carlo
SIR model
SIS model
topic Algoritmo de Gillespie
Epidemiologia
Epidemiology
Gillespie algorithm
Markov process
Modelo SIR
Modelo SIS
Monte Carlo cinético de caminho mais curto
Networks
Processos de Markov
Redes
Shortest-Path Kinetic Monte Carlo
SIR model
SIS model
description The networks have been the focus of intensive study in recent years, because of their flexibility and applicability in a wide range of fields. This thesis delves into the basic understanding of networks, especially those described as complex, to examine their role in the context of epidemiology. The structure of contact networks and time dependence in recovery rates are often referred as aspects that alter the dynamics of infectious disease transmission, but classical epidemiological models assume homogeneous mixing and constant recovery rates, which idealize real-world processes. To overcome these limitations, we address the impact of complex network topologies and variable recovery rates on epidemic dynamics using two statistically exact algorithms: the Gillespie algorithm and the Shortest-Path Kinetic Monte Carlo (SPKMC) algorithm. These methods were applied to the classic Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Removed (SIR) epidemiological models to simulate the disease spread under different network structures and recovery rates close to realistic ones. The analysis described here highlights how these factors shape infectious disease time series, yielding deeper insights into the interplay between network topology and recovery time distributions.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/100/100132/tde-17022025-113828/
url https://www.teses.usp.br/teses/disponiveis/100/100132/tde-17022025-113828/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1848370485578956800