Multilevel method in bipartite networks

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Valejo, Alan Demetrius Baria
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-06012020-174051/
Resumo: Bipartite networks comprise a particular class of network models in which the vertex set is split into two disjoint and independent subsets, with edges connecting only vertices placed in different subsets. They provide a powerful representation of the relationships in many realworld systems and have been widely employed to model data-intensive problems. In a related scenario, multilevel methods have been previously applied to handle computationally expensive optimization problems defined in networks. The strategy aims at reducing the cost of executing an expensive algorithm or task by exploiting a hierarchy of coarsened versions of the original network. There is a growing interest in multilevel methods in networked systems, motivated mostly by their capability of handling large-scale networks and applicability to a variety of problems, most notably community detection and network drawing. Despite their potential, existing approaches are not directly applicable to bipartite networks and, to the best of our knowledge, the multilevel strategy had not been considered in this context so far, opening a vast space for scientific exploration. This gap motivated this research project, which introduces a study on multilevel methods applicable to bipartite networks. In order to overcome the aforementioned limitations, this thesis presents two novel multilevel frameworks for handling bipartite structures, named OPM and MOb. OPM analyzes the bipartite network based on its one-mode projections, allowing the reuse of classical and already established solutions from the literature. MOb (and its Mdr, CSV and CSL variations) operate directly on the bipartite representation to execute the multilevel method, providing a cost-effective implementation. Empirical results obtained on a set of synthetic and real-world networks on diverse applications indicate a considerable speed up with no significant loss in the quality of the solutions obtained in the coarsened networks as compared to those obtained in the original network (i.e., conventional approaches). The potential applicability and reliability of the proposed methods have been illustrated in multiple scenarios, namely optimization, community detection, dimensionality reduction and visualization. Furthermore, the results provide empirical evidence that the proposed methods can foster novel applications of the multilevel method in bipartite networks, e.g. link prediction and trajectory mining and, therefore, that this thesis brings a relevant contribution to the field.
id USP_c14fbae2351a92c4be79b5baf3dc0e89
oai_identifier_str oai:teses.usp.br:tde-06012020-174051
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Multilevel method in bipartite networksMétodo multinível em redes bipartidasBipartite networksComplex networksContração de redesLarge-scale networksMétodo multinívelMultilevel methodNetwork coarseningRedes bipartidasRedes ComplexasRedes de grande escalaBipartite networks comprise a particular class of network models in which the vertex set is split into two disjoint and independent subsets, with edges connecting only vertices placed in different subsets. They provide a powerful representation of the relationships in many realworld systems and have been widely employed to model data-intensive problems. In a related scenario, multilevel methods have been previously applied to handle computationally expensive optimization problems defined in networks. The strategy aims at reducing the cost of executing an expensive algorithm or task by exploiting a hierarchy of coarsened versions of the original network. There is a growing interest in multilevel methods in networked systems, motivated mostly by their capability of handling large-scale networks and applicability to a variety of problems, most notably community detection and network drawing. Despite their potential, existing approaches are not directly applicable to bipartite networks and, to the best of our knowledge, the multilevel strategy had not been considered in this context so far, opening a vast space for scientific exploration. This gap motivated this research project, which introduces a study on multilevel methods applicable to bipartite networks. In order to overcome the aforementioned limitations, this thesis presents two novel multilevel frameworks for handling bipartite structures, named OPM and MOb. OPM analyzes the bipartite network based on its one-mode projections, allowing the reuse of classical and already established solutions from the literature. MOb (and its Mdr, CSV and CSL variations) operate directly on the bipartite representation to execute the multilevel method, providing a cost-effective implementation. Empirical results obtained on a set of synthetic and real-world networks on diverse applications indicate a considerable speed up with no significant loss in the quality of the solutions obtained in the coarsened networks as compared to those obtained in the original network (i.e., conventional approaches). The potential applicability and reliability of the proposed methods have been illustrated in multiple scenarios, namely optimization, community detection, dimensionality reduction and visualization. Furthermore, the results provide empirical evidence that the proposed methods can foster novel applications of the multilevel method in bipartite networks, e.g. link prediction and trajectory mining and, therefore, that this thesis brings a relevant contribution to the field.As redes bipartidas compreendem uma classe particular das redes complexas, na qual vértices são divididos em dois subconjuntos separados e independentes e as arestas conectam apenas vértices de conjuntos diferentes. Tais redes fornecem uma poderosa representação para a modelagem de muitos sistemas complexos do mundo real e têm sido amplamente empregadas em problemas caracterizados pelo alto custo computacional e uso intensivo de dados. Nessa linha, os chamados métodos multinível têm sido empregados para tratar problemas computacionalmente custosos e descrevem uma estratégia escalável que explora (e cria) uma hierarquia de versões reduzidas, ou simplificadas, da rede original. Nos últimos anos, houve um crescente interesse em métodos multinível motivado, principalmente, por sua capacidade de manipular redes de larga escala, bem como sua aplicabilidade em diversos problemas, como detecção de comunidades e visualização. Apesar de seu potencial, as abordagens atuais não são diretamente aplicáveis às redes bipartites e, até onde sabemos, a estratégia multinível não havia sido considerada neste contexto anteriormente, abrindo um vasto espaço para exploração científica. Essa lacuna motivou este projeto de pesquisa, o qual introduz um estudo sobre métodos multinível aplicáveis às redes bipartidas. Para superar as limitações mencionadas, esta tese apresenta duas novas estratégias direcionadas às redes bipartidas, denominadas OPM e MOb. O OPM analisa a rede bipartida em suas projeções unipartidas e permite a reutilização de algoritmos multinível clássicos e já estabelecidos na literatura. O MOb (e suas variações Mdr, CSV e CSL) considera diretamente a estrutura bipartida para executar o método multinível e fornecer uma implementação eficiente e eficaz. Os resultados empíricos obtidos em conjuntos de redes reais e sintéticas, em uma variedade de aplicações, demonstram uma redução considerável no tempo de processamento sem perda significativa na qualidade da solução obtida na rede reduzida, quando comparada aos resultados obtidos na rede original. A potencial aplicabilidade e confiabilidade dos métodos propostos foram ilustradas em múltiplos cenários, a saber: otimização, detecção de comunidades, redução de dimensionalidade e visualização. Além disso, os resultados fornecem evidências empíricas de que os métodos propostos podem fomentar novas aplicações do método multinível em redes bipartidas, por exemplo, na predição de arestas e mineração de trajetórias, e evidenciam que este estudo gerou contribuições relevantes para a área.Biblioteca Digitais de Teses e Dissertações da USPLopes, Alneu de AndradeOliveira, Maria Cristina Ferreira deValejo, Alan Demetrius Baria2019-08-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-06012020-174051/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-01-06T22:47:02Zoai:teses.usp.br:tde-06012020-174051Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-01-06T22:47:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Multilevel method in bipartite networks
Método multinível em redes bipartidas
title Multilevel method in bipartite networks
spellingShingle Multilevel method in bipartite networks
Valejo, Alan Demetrius Baria
Bipartite networks
Complex networks
Contração de redes
Large-scale networks
Método multinível
Multilevel method
Network coarsening
Redes bipartidas
Redes Complexas
Redes de grande escala
title_short Multilevel method in bipartite networks
title_full Multilevel method in bipartite networks
title_fullStr Multilevel method in bipartite networks
title_full_unstemmed Multilevel method in bipartite networks
title_sort Multilevel method in bipartite networks
author Valejo, Alan Demetrius Baria
author_facet Valejo, Alan Demetrius Baria
author_role author
dc.contributor.none.fl_str_mv Lopes, Alneu de Andrade
Oliveira, Maria Cristina Ferreira de
dc.contributor.author.fl_str_mv Valejo, Alan Demetrius Baria
dc.subject.por.fl_str_mv Bipartite networks
Complex networks
Contração de redes
Large-scale networks
Método multinível
Multilevel method
Network coarsening
Redes bipartidas
Redes Complexas
Redes de grande escala
topic Bipartite networks
Complex networks
Contração de redes
Large-scale networks
Método multinível
Multilevel method
Network coarsening
Redes bipartidas
Redes Complexas
Redes de grande escala
description Bipartite networks comprise a particular class of network models in which the vertex set is split into two disjoint and independent subsets, with edges connecting only vertices placed in different subsets. They provide a powerful representation of the relationships in many realworld systems and have been widely employed to model data-intensive problems. In a related scenario, multilevel methods have been previously applied to handle computationally expensive optimization problems defined in networks. The strategy aims at reducing the cost of executing an expensive algorithm or task by exploiting a hierarchy of coarsened versions of the original network. There is a growing interest in multilevel methods in networked systems, motivated mostly by their capability of handling large-scale networks and applicability to a variety of problems, most notably community detection and network drawing. Despite their potential, existing approaches are not directly applicable to bipartite networks and, to the best of our knowledge, the multilevel strategy had not been considered in this context so far, opening a vast space for scientific exploration. This gap motivated this research project, which introduces a study on multilevel methods applicable to bipartite networks. In order to overcome the aforementioned limitations, this thesis presents two novel multilevel frameworks for handling bipartite structures, named OPM and MOb. OPM analyzes the bipartite network based on its one-mode projections, allowing the reuse of classical and already established solutions from the literature. MOb (and its Mdr, CSV and CSL variations) operate directly on the bipartite representation to execute the multilevel method, providing a cost-effective implementation. Empirical results obtained on a set of synthetic and real-world networks on diverse applications indicate a considerable speed up with no significant loss in the quality of the solutions obtained in the coarsened networks as compared to those obtained in the original network (i.e., conventional approaches). The potential applicability and reliability of the proposed methods have been illustrated in multiple scenarios, namely optimization, community detection, dimensionality reduction and visualization. Furthermore, the results provide empirical evidence that the proposed methods can foster novel applications of the multilevel method in bipartite networks, e.g. link prediction and trajectory mining and, therefore, that this thesis brings a relevant contribution to the field.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-06012020-174051/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-06012020-174051/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257934530084864