Sistema de reconhecimento de padrões visuais invariante a transformações geométricas utilizando redes neurais artificiais de múltiplas camadas

Detalhes bibliográficos
Ano de defesa: 1996
Autor(a) principal: Costa, José Alfredo Ferreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18133/tde-23012018-135451/
Resumo: As áreas de visão computacional e redes neurais artificiais (RNAs) e suas aplicações, tiveram um enorme progresso em pesquisa e aplicações práticas nos últimos anos. Sistemas de inspeção visual automática têm despertado muita atenção na indústria pois provêem meios econômicos, eficientes e precisos de obtenção de controle de qualidade. Porém, apesar do grande avanço tecnológico, a maioria dos sistemas existentes, com exceção de alguns poucos experimentais, são especializados e foram projetados para inspecionar um único objeto ou peça, de tipo previamente conhecido, e em posição, orientação e distância em relação à câmara altamente restritas. Este trabalho descreve um sistema de reconhecimento de imagens contendo múltiplos objetos de classes aleatórias e tolerante a ruído. Um estágio de pré-processamento filtra parte do ruído e segmenta regiões conectadas da imagem (RCI). A classificação dos padrões é feita com redes neurais de múltiplas camadas a partir de atributos invariantes calculados sobre as RCis. No final do processo temos uma listagem dos objetos contidos na cena, suas posições e orientações, os quais podem servir de entrada a um sistema de entendimento da cena, de mais alto nível, ou para outras máquinas, como um manipulador automático. Outros parâmetros podem ser utilizados para normalizar, em escala, orientação e posição, os padrões contidos na imagem, para efeito de comparações com imagens e parâmetros dos objetos previamente armazenados em bancos de dados. Dois métodos de treinamento de RNAs foram testados, o gradiente conjugado e o Levenberg-Marquardt, em conjunção com simulated annealing, para diferentes condições de erro e conjuntos de atributos. Imagens reais e sintéticas foram utilizadas para efeitos de testes de classificação correta e rejeição de padrões espúrios. Resultados são apresentados e comentados, destacando a capacidade de generalização do sistema mesmo com elevada degradação da imagem pelo ruído. Uma das vantagens do tipo de RNA empregado é a velocidade de execução, que permite ao sistema ser integrado a uma linha de montagem industrial. O sistema foi projetado com a utilização de recursos acessíveis e de baixo custo, sendo executado em computadores pessoais, e podendo ser facilmente adaptado para o uso em pequenas e médias empresas.
id USP_c16e2809dc5d5c9ca5b39de6eed0d934
oai_identifier_str oai:teses.usp.br:tde-23012018-135451
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Sistema de reconhecimento de padrões visuais invariante a transformações geométricas utilizando redes neurais artificiais de múltiplas camadasnot availableArtificial neural networksAutomationComputer visionPattern classificationReconhecimento automático de objetosRedes neurais artificiaisSistemas de classificaçãoSistemas inteligentesVisão computacionalVisual pattern recognitionAs áreas de visão computacional e redes neurais artificiais (RNAs) e suas aplicações, tiveram um enorme progresso em pesquisa e aplicações práticas nos últimos anos. Sistemas de inspeção visual automática têm despertado muita atenção na indústria pois provêem meios econômicos, eficientes e precisos de obtenção de controle de qualidade. Porém, apesar do grande avanço tecnológico, a maioria dos sistemas existentes, com exceção de alguns poucos experimentais, são especializados e foram projetados para inspecionar um único objeto ou peça, de tipo previamente conhecido, e em posição, orientação e distância em relação à câmara altamente restritas. Este trabalho descreve um sistema de reconhecimento de imagens contendo múltiplos objetos de classes aleatórias e tolerante a ruído. Um estágio de pré-processamento filtra parte do ruído e segmenta regiões conectadas da imagem (RCI). A classificação dos padrões é feita com redes neurais de múltiplas camadas a partir de atributos invariantes calculados sobre as RCis. No final do processo temos uma listagem dos objetos contidos na cena, suas posições e orientações, os quais podem servir de entrada a um sistema de entendimento da cena, de mais alto nível, ou para outras máquinas, como um manipulador automático. Outros parâmetros podem ser utilizados para normalizar, em escala, orientação e posição, os padrões contidos na imagem, para efeito de comparações com imagens e parâmetros dos objetos previamente armazenados em bancos de dados. Dois métodos de treinamento de RNAs foram testados, o gradiente conjugado e o Levenberg-Marquardt, em conjunção com simulated annealing, para diferentes condições de erro e conjuntos de atributos. Imagens reais e sintéticas foram utilizadas para efeitos de testes de classificação correta e rejeição de padrões espúrios. Resultados são apresentados e comentados, destacando a capacidade de generalização do sistema mesmo com elevada degradação da imagem pelo ruído. Uma das vantagens do tipo de RNA empregado é a velocidade de execução, que permite ao sistema ser integrado a uma linha de montagem industrial. O sistema foi projetado com a utilização de recursos acessíveis e de baixo custo, sendo executado em computadores pessoais, e podendo ser facilmente adaptado para o uso em pequenas e médias empresas.Computer vision (CV) and artificial neural networks (ANN) are important research fields of artificial intelligence. Visual pattern recognition (VPR) and object recognition (2 or 3-D) are central tasks in a high level computer vision system. Despite the great development in the recent years, most of the current automatic visual inspection systems work with only one kind of pattern at time which has pose highly restricted. This dissertation describes a system designed to recognize patterns and objects in a digital image which have unknown number object types and poses. Such image, which is also degraded by noise, serve as input for the system. After gray level change and filtering, the pixel connected regions (CR) are codified, and the remained noise is eliminated. lnvariant features, i.e., moment invariants, serve as inputs for artificial neural networks that perform pattern classification. An interpretation module decode the net\'s outputs and increases the correct assignment by testing the net\'s higher outputs values. After all identified patterns were classified, we have an object listing of the scene, their positions and other information, which can be the input for a higher level scene understanding system, that may check for objects relations and could send information for humans or for other machines. Two ANN learning methods were adopted for training the networks, the conjugate gradient and the Levenberg-Marquardt Algoritms, both in conjuction with siumlated annealing, for different error conditions and feature sets. Sinthetic and real images were utilized for testing the net\'s correct class assignments and rejections. Results are presented as well as comments focusing the system\'s generalization capability despite noise, geometrical transformations, object shadows and other degradations over the images. One of the advantages of the ANN employed is the low execution time allowing the system to be integrated to an assembly industry line. The system runs on low cost personal computers, therefore it can be easily adapted for the Brazilian reality and can even be used by little companies and industries.Biblioteca Digitais de Teses e Dissertações da USPGonzaga, AdilsonCosta, José Alfredo Ferreira1996-01-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18133/tde-23012018-135451/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-09-20T19:49:24Zoai:teses.usp.br:tde-23012018-135451Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-09-20T19:49:24Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Sistema de reconhecimento de padrões visuais invariante a transformações geométricas utilizando redes neurais artificiais de múltiplas camadas
not available
title Sistema de reconhecimento de padrões visuais invariante a transformações geométricas utilizando redes neurais artificiais de múltiplas camadas
spellingShingle Sistema de reconhecimento de padrões visuais invariante a transformações geométricas utilizando redes neurais artificiais de múltiplas camadas
Costa, José Alfredo Ferreira
Artificial neural networks
Automation
Computer vision
Pattern classification
Reconhecimento automático de objetos
Redes neurais artificiais
Sistemas de classificação
Sistemas inteligentes
Visão computacional
Visual pattern recognition
title_short Sistema de reconhecimento de padrões visuais invariante a transformações geométricas utilizando redes neurais artificiais de múltiplas camadas
title_full Sistema de reconhecimento de padrões visuais invariante a transformações geométricas utilizando redes neurais artificiais de múltiplas camadas
title_fullStr Sistema de reconhecimento de padrões visuais invariante a transformações geométricas utilizando redes neurais artificiais de múltiplas camadas
title_full_unstemmed Sistema de reconhecimento de padrões visuais invariante a transformações geométricas utilizando redes neurais artificiais de múltiplas camadas
title_sort Sistema de reconhecimento de padrões visuais invariante a transformações geométricas utilizando redes neurais artificiais de múltiplas camadas
author Costa, José Alfredo Ferreira
author_facet Costa, José Alfredo Ferreira
author_role author
dc.contributor.none.fl_str_mv Gonzaga, Adilson
dc.contributor.author.fl_str_mv Costa, José Alfredo Ferreira
dc.subject.por.fl_str_mv Artificial neural networks
Automation
Computer vision
Pattern classification
Reconhecimento automático de objetos
Redes neurais artificiais
Sistemas de classificação
Sistemas inteligentes
Visão computacional
Visual pattern recognition
topic Artificial neural networks
Automation
Computer vision
Pattern classification
Reconhecimento automático de objetos
Redes neurais artificiais
Sistemas de classificação
Sistemas inteligentes
Visão computacional
Visual pattern recognition
description As áreas de visão computacional e redes neurais artificiais (RNAs) e suas aplicações, tiveram um enorme progresso em pesquisa e aplicações práticas nos últimos anos. Sistemas de inspeção visual automática têm despertado muita atenção na indústria pois provêem meios econômicos, eficientes e precisos de obtenção de controle de qualidade. Porém, apesar do grande avanço tecnológico, a maioria dos sistemas existentes, com exceção de alguns poucos experimentais, são especializados e foram projetados para inspecionar um único objeto ou peça, de tipo previamente conhecido, e em posição, orientação e distância em relação à câmara altamente restritas. Este trabalho descreve um sistema de reconhecimento de imagens contendo múltiplos objetos de classes aleatórias e tolerante a ruído. Um estágio de pré-processamento filtra parte do ruído e segmenta regiões conectadas da imagem (RCI). A classificação dos padrões é feita com redes neurais de múltiplas camadas a partir de atributos invariantes calculados sobre as RCis. No final do processo temos uma listagem dos objetos contidos na cena, suas posições e orientações, os quais podem servir de entrada a um sistema de entendimento da cena, de mais alto nível, ou para outras máquinas, como um manipulador automático. Outros parâmetros podem ser utilizados para normalizar, em escala, orientação e posição, os padrões contidos na imagem, para efeito de comparações com imagens e parâmetros dos objetos previamente armazenados em bancos de dados. Dois métodos de treinamento de RNAs foram testados, o gradiente conjugado e o Levenberg-Marquardt, em conjunção com simulated annealing, para diferentes condições de erro e conjuntos de atributos. Imagens reais e sintéticas foram utilizadas para efeitos de testes de classificação correta e rejeição de padrões espúrios. Resultados são apresentados e comentados, destacando a capacidade de generalização do sistema mesmo com elevada degradação da imagem pelo ruído. Uma das vantagens do tipo de RNA empregado é a velocidade de execução, que permite ao sistema ser integrado a uma linha de montagem industrial. O sistema foi projetado com a utilização de recursos acessíveis e de baixo custo, sendo executado em computadores pessoais, e podendo ser facilmente adaptado para o uso em pequenas e médias empresas.
publishDate 1996
dc.date.none.fl_str_mv 1996-01-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18133/tde-23012018-135451/
url http://www.teses.usp.br/teses/disponiveis/18/18133/tde-23012018-135451/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258405434032128