Algoritmos para avaliação da qualidade de vídeo em sistemas de televisão digital.

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Fonseca, Roberto Nery da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-28042009-170527/
Resumo: Nesta dissertação é abordado o tema da avaliação de qualidade em sinais de vídeo, especificamente da avaliação objetiva completamente referenciada de sinais de vídeo em definição padrão. A forma mais confiável de se medir a diferença de qualidade entre duas cenas de vídeo é utilizando um painel formado por telespectadores, resultando em uma medida subjetiva da diferença de qualidade. Esta metodologia demanda um longo período de tempo e um elevado custo operacional, o que a torna pouco prática para utilização. Neste trabalho são apresentados os aspectos relevantes do sistema visual humano, das metodologias para avaliação de vídeo em aplicações de televisão digital em definição padrão e também da validação destas metodologias. O objetivo desta dissertação é testar métricas de baixo custo computacional como a que avalia a relação sinal-ruído de pico (PSNR: Peak Signal-to-Noise Ratio), a que mede similaridade estrutural (SSIM: Structural SIMilarity) e a que mede diferenças em três componentes de cor definidas pela CIE (Commission Internationale de l\'Eclairage), representadas por L*, a* e b* em uma dada extensão espacial (S-CIELAB: Spatial-CIELAB). Uma metodologia de validação destas métricas é apresentada, tendo como base as cenas e resultados dos testes subjetivos efetuados pelo Grupo de Especialistas em Qualidade de Vídeo (VQEG: Video Quality Expert Group). A estas métricas é introduzida uma etapa de preparação das cenas, na qual são efetuadas equalização de brilho, suavização de detalhes e detecção de contornos. Controlando-se a intensidade destes filtros, um novo conjunto de medidas é obtido. Comparações de desempenho são realizadas entre estes novos conjuntos de medidas e o conjunto de medidas obtido pelo VQEG. Os resultados mostram que para aplicações em televisão digital de definição padrão, a avaliação utilizando componentes de cor pouco influencia na correlação com as medidas obtidas nos testes subjetivos. Por outro lado, foi verificado que a aplicação adequada de técnicas para suavização de imagens, combinadas com métricas de fácil implementação como a SSIM, elevam seu grau de correlação com medidas subjetivas. Também foi demonstrado que técnicas para extração de contornos, combinadas com a métrica PSNR, podem aumentar significativamente seu desempenho em termos de correlação com os testes efetuados pelo VQEG. À luz destes resultados, foi concluído que medidas objetivas de fácil implementação do ponto de vista computacional podem ser usadas para comparação da qualidade de sinais de vídeo SDTV, desde que devidamente combinadas com técnicas para adequação ao sistema visual humano como a suavização e extração de contornos.
id USP_c1e5ebfb43f1d4bc9893f5be654ed47d
oai_identifier_str oai:teses.usp.br:tde-28042009-170527
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Algoritmos para avaliação da qualidade de vídeo em sistemas de televisão digital.Video quality assessment algorithms in digital television applications.Algorithms (evaluation)AlgoritmosDigital imageDigital image processingDigital televisionImagem digitalMétricas de softwareProcessamento de sinais de vídeoProcessamento digital de imagensSoftware metricsTelevisão digitalVídeo (qualidade)Video (quality)Video signal processingNesta dissertação é abordado o tema da avaliação de qualidade em sinais de vídeo, especificamente da avaliação objetiva completamente referenciada de sinais de vídeo em definição padrão. A forma mais confiável de se medir a diferença de qualidade entre duas cenas de vídeo é utilizando um painel formado por telespectadores, resultando em uma medida subjetiva da diferença de qualidade. Esta metodologia demanda um longo período de tempo e um elevado custo operacional, o que a torna pouco prática para utilização. Neste trabalho são apresentados os aspectos relevantes do sistema visual humano, das metodologias para avaliação de vídeo em aplicações de televisão digital em definição padrão e também da validação destas metodologias. O objetivo desta dissertação é testar métricas de baixo custo computacional como a que avalia a relação sinal-ruído de pico (PSNR: Peak Signal-to-Noise Ratio), a que mede similaridade estrutural (SSIM: Structural SIMilarity) e a que mede diferenças em três componentes de cor definidas pela CIE (Commission Internationale de l\'Eclairage), representadas por L*, a* e b* em uma dada extensão espacial (S-CIELAB: Spatial-CIELAB). Uma metodologia de validação destas métricas é apresentada, tendo como base as cenas e resultados dos testes subjetivos efetuados pelo Grupo de Especialistas em Qualidade de Vídeo (VQEG: Video Quality Expert Group). A estas métricas é introduzida uma etapa de preparação das cenas, na qual são efetuadas equalização de brilho, suavização de detalhes e detecção de contornos. Controlando-se a intensidade destes filtros, um novo conjunto de medidas é obtido. Comparações de desempenho são realizadas entre estes novos conjuntos de medidas e o conjunto de medidas obtido pelo VQEG. Os resultados mostram que para aplicações em televisão digital de definição padrão, a avaliação utilizando componentes de cor pouco influencia na correlação com as medidas obtidas nos testes subjetivos. Por outro lado, foi verificado que a aplicação adequada de técnicas para suavização de imagens, combinadas com métricas de fácil implementação como a SSIM, elevam seu grau de correlação com medidas subjetivas. Também foi demonstrado que técnicas para extração de contornos, combinadas com a métrica PSNR, podem aumentar significativamente seu desempenho em termos de correlação com os testes efetuados pelo VQEG. À luz destes resultados, foi concluído que medidas objetivas de fácil implementação do ponto de vista computacional podem ser usadas para comparação da qualidade de sinais de vídeo SDTV, desde que devidamente combinadas com técnicas para adequação ao sistema visual humano como a suavização e extração de contornos.This research is about the video signal quality comparison issue, focusing at full reference metrics using standard definition television. The most reliable way to predict the differences in terms of quality between two video scenes is using a panel of television viewers, under controlled psychometric experimental conditions, resulting in statistical meaningful Differences in Mean Opinion Score (DMOS). The Subjective assessment is both time consuming and costly, therefore with practical limitations. The ideal substitute are objective quality assessment algorithms, whose scores have been shown to correlate highly with the results of DMOS. The goal for this research is to optimize the performance of simple metrics combining it with digital image processing. First this work presents many relevant aspects of the human visual system, methodologies for video evaluation in digital television applications using standard definition (SDTV) and also a validation methodology of these methods. After that, the main goal is to test three very simple metrics in terms of computational cost: PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural SIMilarity) and S-CIELAB (Spatial-CIELAB). original metrics were modified in order to improve their correlations against subjective assessment data. Several experiments combining the advantages of digital image filters for softness and edge extraction have been accomplished within this work. The results show that such simple metrics combined with digital image processing for edge extraction, for example, do improve their correlations with subjective assessment.Biblioteca Digitais de Teses e Dissertações da USPArjona Ramírez, Miguel Fonseca, Roberto Nery da2008-10-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3142/tde-28042009-170527/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:59Zoai:teses.usp.br:tde-28042009-170527Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Algoritmos para avaliação da qualidade de vídeo em sistemas de televisão digital.
Video quality assessment algorithms in digital television applications.
title Algoritmos para avaliação da qualidade de vídeo em sistemas de televisão digital.
spellingShingle Algoritmos para avaliação da qualidade de vídeo em sistemas de televisão digital.
Fonseca, Roberto Nery da
Algorithms (evaluation)
Algoritmos
Digital image
Digital image processing
Digital television
Imagem digital
Métricas de software
Processamento de sinais de vídeo
Processamento digital de imagens
Software metrics
Televisão digital
Vídeo (qualidade)
Video (quality)
Video signal processing
title_short Algoritmos para avaliação da qualidade de vídeo em sistemas de televisão digital.
title_full Algoritmos para avaliação da qualidade de vídeo em sistemas de televisão digital.
title_fullStr Algoritmos para avaliação da qualidade de vídeo em sistemas de televisão digital.
title_full_unstemmed Algoritmos para avaliação da qualidade de vídeo em sistemas de televisão digital.
title_sort Algoritmos para avaliação da qualidade de vídeo em sistemas de televisão digital.
author Fonseca, Roberto Nery da
author_facet Fonseca, Roberto Nery da
author_role author
dc.contributor.none.fl_str_mv Arjona Ramírez, Miguel
dc.contributor.author.fl_str_mv Fonseca, Roberto Nery da
dc.subject.por.fl_str_mv Algorithms (evaluation)
Algoritmos
Digital image
Digital image processing
Digital television
Imagem digital
Métricas de software
Processamento de sinais de vídeo
Processamento digital de imagens
Software metrics
Televisão digital
Vídeo (qualidade)
Video (quality)
Video signal processing
topic Algorithms (evaluation)
Algoritmos
Digital image
Digital image processing
Digital television
Imagem digital
Métricas de software
Processamento de sinais de vídeo
Processamento digital de imagens
Software metrics
Televisão digital
Vídeo (qualidade)
Video (quality)
Video signal processing
description Nesta dissertação é abordado o tema da avaliação de qualidade em sinais de vídeo, especificamente da avaliação objetiva completamente referenciada de sinais de vídeo em definição padrão. A forma mais confiável de se medir a diferença de qualidade entre duas cenas de vídeo é utilizando um painel formado por telespectadores, resultando em uma medida subjetiva da diferença de qualidade. Esta metodologia demanda um longo período de tempo e um elevado custo operacional, o que a torna pouco prática para utilização. Neste trabalho são apresentados os aspectos relevantes do sistema visual humano, das metodologias para avaliação de vídeo em aplicações de televisão digital em definição padrão e também da validação destas metodologias. O objetivo desta dissertação é testar métricas de baixo custo computacional como a que avalia a relação sinal-ruído de pico (PSNR: Peak Signal-to-Noise Ratio), a que mede similaridade estrutural (SSIM: Structural SIMilarity) e a que mede diferenças em três componentes de cor definidas pela CIE (Commission Internationale de l\'Eclairage), representadas por L*, a* e b* em uma dada extensão espacial (S-CIELAB: Spatial-CIELAB). Uma metodologia de validação destas métricas é apresentada, tendo como base as cenas e resultados dos testes subjetivos efetuados pelo Grupo de Especialistas em Qualidade de Vídeo (VQEG: Video Quality Expert Group). A estas métricas é introduzida uma etapa de preparação das cenas, na qual são efetuadas equalização de brilho, suavização de detalhes e detecção de contornos. Controlando-se a intensidade destes filtros, um novo conjunto de medidas é obtido. Comparações de desempenho são realizadas entre estes novos conjuntos de medidas e o conjunto de medidas obtido pelo VQEG. Os resultados mostram que para aplicações em televisão digital de definição padrão, a avaliação utilizando componentes de cor pouco influencia na correlação com as medidas obtidas nos testes subjetivos. Por outro lado, foi verificado que a aplicação adequada de técnicas para suavização de imagens, combinadas com métricas de fácil implementação como a SSIM, elevam seu grau de correlação com medidas subjetivas. Também foi demonstrado que técnicas para extração de contornos, combinadas com a métrica PSNR, podem aumentar significativamente seu desempenho em termos de correlação com os testes efetuados pelo VQEG. À luz destes resultados, foi concluído que medidas objetivas de fácil implementação do ponto de vista computacional podem ser usadas para comparação da qualidade de sinais de vídeo SDTV, desde que devidamente combinadas com técnicas para adequação ao sistema visual humano como a suavização e extração de contornos.
publishDate 2008
dc.date.none.fl_str_mv 2008-10-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3142/tde-28042009-170527/
url http://www.teses.usp.br/teses/disponiveis/3/3142/tde-28042009-170527/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258527306874880