Micro/nanometric processing of CVD diamond with femtosecond laser pulses
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/18/18158/tde-22042025-102725/ |
Resumo: | Diamond is one of the most known allotropic forms of carbon, famous for its extreme properties such as high hardness and thermal conductivity. It possesses a wide transparency window (from ultraviolet up to the microwave region), high refractive index and other interesting features. In addition, as a wide band gap semiconductor, it presents an energy gap of 5.47 eV, and even displays interesting nonlinear optical properties such as two and three-photon absorption, and thus, such material is highly sought-after for opto-photonics technologies. Furthermore, such material hosts many defects associated with trapped electrons or holes. The Nitrogen-Vacancy color center, in particular, is its most notorious defect, with possible applications in Quantum Photonics as a quantum emitter of light or even optically accessed qubits. That said, amidst the many diamond processing techniques, femtosecond laser micromachining distinguishes itself due to its capacity to fabricate micro/nanometric devices with high precision in either the surface or bulk, capitalizing on the nonlinear optical effects. Therefore, in this work, the ablation threshold fluence (minimal energy density required for material removal) was extensively explored over a wide range of fs-laser pulses per spot through the zero-damage method to verify the incubation effect, which was evaluated via an exponential defect accumulation model. From such analysis, it was determined that, at 515 nm, the decrease in the threshold fluence value was more efficient when compared to 1030 and 343 nm cases, and it was hypothesized that NV color centers present within the micromachined region aided the light absorption mechanisms, since such defect is known to absorb at 532 nm. The defects presence was confirmed via Raman spectroscopy and photoluminescence analyses, which prompted a subsequential study regarding the optimal experimental parameters for NV color center generation via ultrashort laser pulses. It was determined that the color center generation is proportional to the peak laser fluence used during micromachining, while it is inversely proportional to the pulse duration and excitation wavelength. In addition, a vacancy generation via fs-laser micromachining first principles model was proposed, where the two, three and five-photon absorption cross-sections of diamond were determined. Moreover, Optically Detected Magnetic Resonance (ODMR) measurements were performed on the fabricated defects, confirming their presence as well as determining their coherence time (longitudinal relaxation time) of 3.2 ms. Finally, machine learning techniques (principle component analysis/artificial neural network) were employed as an alternative procedure for analyzing the NV color center generation data, which reached the same conclusions regarding the optimal experimental conditions, thus revealing it to be promising tools for future microfabrication experiments. Hence, this work is an important step toward mastering diamond processing and color center generation via ultrashort pulses. |
| id |
USP_c24791baee65313628e08ef946dfe308 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-22042025-102725 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Micro/nanometric processing of CVD diamond with femtosecond laser pulsesProcessamento micro/nanométrico de diamante CVD via pulsos laser de femtossegundoscentro de cor nitrogênio-vacânciacvd diamonddiamante cvdefeito de incubaçãofs-micromachiningincubation effectmicrofabricaçãonitrogen-vacancy color centernonlinear opticsóptica não-linearsemicondutores de banda largawide bandgap semiconductorDiamond is one of the most known allotropic forms of carbon, famous for its extreme properties such as high hardness and thermal conductivity. It possesses a wide transparency window (from ultraviolet up to the microwave region), high refractive index and other interesting features. In addition, as a wide band gap semiconductor, it presents an energy gap of 5.47 eV, and even displays interesting nonlinear optical properties such as two and three-photon absorption, and thus, such material is highly sought-after for opto-photonics technologies. Furthermore, such material hosts many defects associated with trapped electrons or holes. The Nitrogen-Vacancy color center, in particular, is its most notorious defect, with possible applications in Quantum Photonics as a quantum emitter of light or even optically accessed qubits. That said, amidst the many diamond processing techniques, femtosecond laser micromachining distinguishes itself due to its capacity to fabricate micro/nanometric devices with high precision in either the surface or bulk, capitalizing on the nonlinear optical effects. Therefore, in this work, the ablation threshold fluence (minimal energy density required for material removal) was extensively explored over a wide range of fs-laser pulses per spot through the zero-damage method to verify the incubation effect, which was evaluated via an exponential defect accumulation model. From such analysis, it was determined that, at 515 nm, the decrease in the threshold fluence value was more efficient when compared to 1030 and 343 nm cases, and it was hypothesized that NV color centers present within the micromachined region aided the light absorption mechanisms, since such defect is known to absorb at 532 nm. The defects presence was confirmed via Raman spectroscopy and photoluminescence analyses, which prompted a subsequential study regarding the optimal experimental parameters for NV color center generation via ultrashort laser pulses. It was determined that the color center generation is proportional to the peak laser fluence used during micromachining, while it is inversely proportional to the pulse duration and excitation wavelength. In addition, a vacancy generation via fs-laser micromachining first principles model was proposed, where the two, three and five-photon absorption cross-sections of diamond were determined. Moreover, Optically Detected Magnetic Resonance (ODMR) measurements were performed on the fabricated defects, confirming their presence as well as determining their coherence time (longitudinal relaxation time) of 3.2 ms. Finally, machine learning techniques (principle component analysis/artificial neural network) were employed as an alternative procedure for analyzing the NV color center generation data, which reached the same conclusions regarding the optimal experimental conditions, thus revealing it to be promising tools for future microfabrication experiments. Hence, this work is an important step toward mastering diamond processing and color center generation via ultrashort pulses.O diamante é uma das formas alotrópicas do carbono mais conhecidas, famosa por suas propriedades extremas como sua alta dureza e condutividade térmica, larga janela de transparência (do ultravioleta até a região de microondas), alto índice de refração, entre outras. Além disso, este material é hospedeiro de muitos defeitos associados a elétrons aprisionados ou buracos. O centro de cor Nitrogênio-Vacância (NV), em particular, é seu defeito mais notório, com possíveis aplicações em fotônica-quântica como um emissor quântico de luz ou ainda qubits acessados opticamente. Dito isso, dentro as diversas técnicas de processamento de diamantes, a microfabricação via laser de femtossegundos se destaca devido a sua capacidade de fabricar dispositivos micro/nanométricos com grande precisão tanto na superfície quanto no volume do material através de processos ópticos não-lineares. Portanto, neste trabalho, a fluência limiar de ablação (densidade de energia mínima necessária para remoção de material) foi extensamente explorada num intervalo grande de pulsos por posição através do método de dano-zero para verificar o efeito de incubação, avaliado através de um modelo de acúmulo de defeitos exponencial. Desta análise, foi determinado que, em 515 nm, o decréscimo da fluência limiar foi mais efetivo quando comparado com os casos em 1030 e 343 nm, e foi assumido que a presença de defeitos NV presentes na região microestruturada ajudou os mecanismos de absorção da luz, uma vez que tal centro de cor é conhecido por absorver em 532 nm. A presença de tal defeito foi confirmada através de espectroscopia Raman e análises de fotoluminescência, o que motivou um estudo subsequente a respeito das condições experimentais ideais para a formação de centros de cor NV via pulsos ultracurtos. Neste estudo, foi determinado que a geração de centros de cor é proporcional à fluência de pico do laser e inversamente proporcional à largura temporal do pulso e comprimento de onda de excitação. Ainda, um modelo de primeiros princípios para a geração de vacâncias através da microfabricação foi proposto, onde as seções de choque de absorção de dois, três e cinco fótons foram determinadas. Além disso, medidas de ressonância magnética detectadas opticamente (ODMR) foram realizadas nos defeitos fabricados, confirmando novamente sua presença assim como determinando seu tempo de coerência (tempo de relaxação longitudinal) de 3.2 ms. Por fim, técnicas de aprendizado de máquina (análise de componentes principais/rede neural artificial) foram empregadas como um procedimento alternativo para a análise dos dados de geração de centros de cores, que resultou nas mesmas conclusões obtidas anteriormente com relação às condições experimentais e, portanto, demonstrou ser uma ferramenta promissora para futuros trabalhos em microfabricação. Portanto, este trabalho é um passo importante para dominar o processamento de diamantes e a geração de centros de cores por meio de pulsos ultracurtos.Biblioteca Digitais de Teses e Dissertações da USPMendonça, Cleber RenatoNolasco, Lucas Konaka2025-04-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18158/tde-22042025-102725/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-04-25T19:50:06Zoai:teses.usp.br:tde-22042025-102725Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-04-25T19:50:06Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Micro/nanometric processing of CVD diamond with femtosecond laser pulses Processamento micro/nanométrico de diamante CVD via pulsos laser de femtossegundos |
| title |
Micro/nanometric processing of CVD diamond with femtosecond laser pulses |
| spellingShingle |
Micro/nanometric processing of CVD diamond with femtosecond laser pulses Nolasco, Lucas Konaka centro de cor nitrogênio-vacância cvd diamond diamante cvd efeito de incubação fs-micromachining incubation effect microfabricação nitrogen-vacancy color center nonlinear optics óptica não-linear semicondutores de banda larga wide bandgap semiconductor |
| title_short |
Micro/nanometric processing of CVD diamond with femtosecond laser pulses |
| title_full |
Micro/nanometric processing of CVD diamond with femtosecond laser pulses |
| title_fullStr |
Micro/nanometric processing of CVD diamond with femtosecond laser pulses |
| title_full_unstemmed |
Micro/nanometric processing of CVD diamond with femtosecond laser pulses |
| title_sort |
Micro/nanometric processing of CVD diamond with femtosecond laser pulses |
| author |
Nolasco, Lucas Konaka |
| author_facet |
Nolasco, Lucas Konaka |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Mendonça, Cleber Renato |
| dc.contributor.author.fl_str_mv |
Nolasco, Lucas Konaka |
| dc.subject.por.fl_str_mv |
centro de cor nitrogênio-vacância cvd diamond diamante cvd efeito de incubação fs-micromachining incubation effect microfabricação nitrogen-vacancy color center nonlinear optics óptica não-linear semicondutores de banda larga wide bandgap semiconductor |
| topic |
centro de cor nitrogênio-vacância cvd diamond diamante cvd efeito de incubação fs-micromachining incubation effect microfabricação nitrogen-vacancy color center nonlinear optics óptica não-linear semicondutores de banda larga wide bandgap semiconductor |
| description |
Diamond is one of the most known allotropic forms of carbon, famous for its extreme properties such as high hardness and thermal conductivity. It possesses a wide transparency window (from ultraviolet up to the microwave region), high refractive index and other interesting features. In addition, as a wide band gap semiconductor, it presents an energy gap of 5.47 eV, and even displays interesting nonlinear optical properties such as two and three-photon absorption, and thus, such material is highly sought-after for opto-photonics technologies. Furthermore, such material hosts many defects associated with trapped electrons or holes. The Nitrogen-Vacancy color center, in particular, is its most notorious defect, with possible applications in Quantum Photonics as a quantum emitter of light or even optically accessed qubits. That said, amidst the many diamond processing techniques, femtosecond laser micromachining distinguishes itself due to its capacity to fabricate micro/nanometric devices with high precision in either the surface or bulk, capitalizing on the nonlinear optical effects. Therefore, in this work, the ablation threshold fluence (minimal energy density required for material removal) was extensively explored over a wide range of fs-laser pulses per spot through the zero-damage method to verify the incubation effect, which was evaluated via an exponential defect accumulation model. From such analysis, it was determined that, at 515 nm, the decrease in the threshold fluence value was more efficient when compared to 1030 and 343 nm cases, and it was hypothesized that NV color centers present within the micromachined region aided the light absorption mechanisms, since such defect is known to absorb at 532 nm. The defects presence was confirmed via Raman spectroscopy and photoluminescence analyses, which prompted a subsequential study regarding the optimal experimental parameters for NV color center generation via ultrashort laser pulses. It was determined that the color center generation is proportional to the peak laser fluence used during micromachining, while it is inversely proportional to the pulse duration and excitation wavelength. In addition, a vacancy generation via fs-laser micromachining first principles model was proposed, where the two, three and five-photon absorption cross-sections of diamond were determined. Moreover, Optically Detected Magnetic Resonance (ODMR) measurements were performed on the fabricated defects, confirming their presence as well as determining their coherence time (longitudinal relaxation time) of 3.2 ms. Finally, machine learning techniques (principle component analysis/artificial neural network) were employed as an alternative procedure for analyzing the NV color center generation data, which reached the same conclusions regarding the optimal experimental conditions, thus revealing it to be promising tools for future microfabrication experiments. Hence, this work is an important step toward mastering diamond processing and color center generation via ultrashort pulses. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-04-02 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18158/tde-22042025-102725/ |
| url |
https://www.teses.usp.br/teses/disponiveis/18/18158/tde-22042025-102725/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1839839154711560192 |