Tratamento algébrico e computacionalmente eficiente para a interação entre sistema e meio ambiente

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Batalhão, Tiago Barbin
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/76/76131/tde-23102012-091503/
Resumo: Realizamos nesse trabalho um tratamento abrangente da interação entre um sistema quântico e o meio ambiente modelado como um conjunto de osciladores harmônicos. Partimos para isso de um tratamento prévio de redes de osciladores harmônicos quânticos dissipativos. Utilizando a função característica, transformamos a equação de von Neumann em uma equação diferencial, e explorando a sua linearidade, essa é transformada em uma equação vetorial, cuja resolução é computacionalmente eficiente. Nosso formalismo, que parte de uma rede de osciladores harmônicos, não necessariamente dividida entre sistema e meio ambiente, permite que se contorne a necessidade da hipótese de acoplamento súbito sistema-reservatório para o tratamento exato da evolução do sistema. Em seguida, mostramos que essa evolução pode ser sempre descrita por uma equação mestra na forma usual de Lindblad, embora os coeficientes que a definem possam ser dependentes do tempo. Isso abre novas possibilidades para a dinâmica do sistema, e leva a efeitos que podem ser classificados de não-Markovianos, embora sejam descritos por uma equação mestra completamente local no tempo. Ressaltamos que, por ser baseado em uma solução exata, o método pode ser aplicado para qualquer intensidade de acoplamento, e é consideravelmente mais simples do que outros métodos disponíveis para esse fim, como os baseados em integrais de trajetória. Por fim, utilizamos simulações computacionais para explorar a validade das aproximações de ondas girantes e de Born-Markov, e os fenômenos que podem ser observados nos regimes em que elas deixam de ser válidas.
id USP_c2ebb042ae85165d5e9bc5e41895f5a2
oai_identifier_str oai:teses.usp.br:tde-23102012-091503
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Tratamento algébrico e computacionalmente eficiente para a interação entre sistema e meio ambienteAlgebraic and computationally efficient treatment for the system-environment interactionDecoerênciaDecoherenceDissipação quânticaEquações mestras quânticasNetworks of dissipative oscillatorsQuantum DissipationQuantum master equationsRedes de osciladores dissipativosRealizamos nesse trabalho um tratamento abrangente da interação entre um sistema quântico e o meio ambiente modelado como um conjunto de osciladores harmônicos. Partimos para isso de um tratamento prévio de redes de osciladores harmônicos quânticos dissipativos. Utilizando a função característica, transformamos a equação de von Neumann em uma equação diferencial, e explorando a sua linearidade, essa é transformada em uma equação vetorial, cuja resolução é computacionalmente eficiente. Nosso formalismo, que parte de uma rede de osciladores harmônicos, não necessariamente dividida entre sistema e meio ambiente, permite que se contorne a necessidade da hipótese de acoplamento súbito sistema-reservatório para o tratamento exato da evolução do sistema. Em seguida, mostramos que essa evolução pode ser sempre descrita por uma equação mestra na forma usual de Lindblad, embora os coeficientes que a definem possam ser dependentes do tempo. Isso abre novas possibilidades para a dinâmica do sistema, e leva a efeitos que podem ser classificados de não-Markovianos, embora sejam descritos por uma equação mestra completamente local no tempo. Ressaltamos que, por ser baseado em uma solução exata, o método pode ser aplicado para qualquer intensidade de acoplamento, e é consideravelmente mais simples do que outros métodos disponíveis para esse fim, como os baseados em integrais de trajetória. Por fim, utilizamos simulações computacionais para explorar a validade das aproximações de ondas girantes e de Born-Markov, e os fenômenos que podem ser observados nos regimes em que elas deixam de ser válidas.We present a comprehensive treatment of the interaction of a quantum system with an environment modeled as a set of harmonic oscillators. We start from a previous treatment of a network of quantum dissipative harmonic oscillators. Using the characteristic function, we transform the von Neumann equation in a differential equation, and exploring its linearity, this is transformed in a vector equation, whose solution is computationally efficient. Our method, whose origin lies on a network not necessarily divided into system and reservoir, allows us to circumvent the necessity of the sudden-coupling approximation for the exact treatment of the system evolution. After this, we show that this dynamics can always be described by a master equation in standard Lindblad form, although its coefficients may be functions of time. This opens new possibilities for the system dynamics, and lead to effects that may be called non-Markovian, even if they are described by a completely local-in-time master equation. It should be emphasized that, as it is based on an exact solution, the method may be applied for any strength of the system-reservoir interaction, and it is considerably simpler than other available methods, such as those based on path integrals. Finally, we employ computer simulations to investigate the validity of the rotating-wave and Born-Markov approximations, and the phenomena that migth be observed in regimes in which they fail to be valid.Biblioteca Digitais de Teses e Dissertações da USPMoussa, Miled Hassan YoussefBatalhão, Tiago Barbin2012-07-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76131/tde-23102012-091503/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:32Zoai:teses.usp.br:tde-23102012-091503Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:32Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Tratamento algébrico e computacionalmente eficiente para a interação entre sistema e meio ambiente
Algebraic and computationally efficient treatment for the system-environment interaction
title Tratamento algébrico e computacionalmente eficiente para a interação entre sistema e meio ambiente
spellingShingle Tratamento algébrico e computacionalmente eficiente para a interação entre sistema e meio ambiente
Batalhão, Tiago Barbin
Decoerência
Decoherence
Dissipação quântica
Equações mestras quânticas
Networks of dissipative oscillators
Quantum Dissipation
Quantum master equations
Redes de osciladores dissipativos
title_short Tratamento algébrico e computacionalmente eficiente para a interação entre sistema e meio ambiente
title_full Tratamento algébrico e computacionalmente eficiente para a interação entre sistema e meio ambiente
title_fullStr Tratamento algébrico e computacionalmente eficiente para a interação entre sistema e meio ambiente
title_full_unstemmed Tratamento algébrico e computacionalmente eficiente para a interação entre sistema e meio ambiente
title_sort Tratamento algébrico e computacionalmente eficiente para a interação entre sistema e meio ambiente
author Batalhão, Tiago Barbin
author_facet Batalhão, Tiago Barbin
author_role author
dc.contributor.none.fl_str_mv Moussa, Miled Hassan Youssef
dc.contributor.author.fl_str_mv Batalhão, Tiago Barbin
dc.subject.por.fl_str_mv Decoerência
Decoherence
Dissipação quântica
Equações mestras quânticas
Networks of dissipative oscillators
Quantum Dissipation
Quantum master equations
Redes de osciladores dissipativos
topic Decoerência
Decoherence
Dissipação quântica
Equações mestras quânticas
Networks of dissipative oscillators
Quantum Dissipation
Quantum master equations
Redes de osciladores dissipativos
description Realizamos nesse trabalho um tratamento abrangente da interação entre um sistema quântico e o meio ambiente modelado como um conjunto de osciladores harmônicos. Partimos para isso de um tratamento prévio de redes de osciladores harmônicos quânticos dissipativos. Utilizando a função característica, transformamos a equação de von Neumann em uma equação diferencial, e explorando a sua linearidade, essa é transformada em uma equação vetorial, cuja resolução é computacionalmente eficiente. Nosso formalismo, que parte de uma rede de osciladores harmônicos, não necessariamente dividida entre sistema e meio ambiente, permite que se contorne a necessidade da hipótese de acoplamento súbito sistema-reservatório para o tratamento exato da evolução do sistema. Em seguida, mostramos que essa evolução pode ser sempre descrita por uma equação mestra na forma usual de Lindblad, embora os coeficientes que a definem possam ser dependentes do tempo. Isso abre novas possibilidades para a dinâmica do sistema, e leva a efeitos que podem ser classificados de não-Markovianos, embora sejam descritos por uma equação mestra completamente local no tempo. Ressaltamos que, por ser baseado em uma solução exata, o método pode ser aplicado para qualquer intensidade de acoplamento, e é consideravelmente mais simples do que outros métodos disponíveis para esse fim, como os baseados em integrais de trajetória. Por fim, utilizamos simulações computacionais para explorar a validade das aproximações de ondas girantes e de Born-Markov, e os fenômenos que podem ser observados nos regimes em que elas deixam de ser válidas.
publishDate 2012
dc.date.none.fl_str_mv 2012-07-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76131/tde-23102012-091503/
url http://www.teses.usp.br/teses/disponiveis/76/76131/tde-23102012-091503/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258477517340672