Plateau-rayleigh instability in low-viscosity ratio stratified liquid-liquid flow

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Lugo, Pedro José Miranda
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18164/tde-13032025-101326/
Resumo: The stratified liquid-liquid flow is one of the separate flow patterns observed in nature and many industries, including offshore subsea lines and directional wells. That flow is still an open research subject due to its complex interfacial interaction and restricted hydrodynamic stability in specific operational conditions. The literature reports different theories to explain the stratified flow transition. A recent theory suggests that the interfaces cross-section curvature is related to capillary instability, which effect is stronger at high water volumetric fractions. Nevertheless, to the best of the authors knowledge, no experimental study quantifies that effect, and there is no consensus regarding the preponderant instability mechanism for the typical flow conditions observed in practice. In this thesis, the effect of interfacial tension on the transition of horizontal stratified oil-water pipe flow with low Eötvös numbers (Eo = 2.2 and 9.7) is measured using optical techniques in a novel experimental installation designed and built during this research. Unlike most studies, mineral oil and water with a low viscosity ratio of 1.44 are used. Particle image velocimetry (PIV) was used to measure stratified oil-water pipe flow hydrodynamic quantities at the flows longitudinal plane. Geometrical and kinematic properties of the interfacial wave at the flows longitudinal and cross-section planes for stable and unstable flow conditions were determined via planar laser-induced fluorescence (PLIF). The interfacial wave speed was measured by combining planar imaging, shadow sizing techniques, and 1-D cross-correlation function. The axial velocity profiles showed an S-shape profile in the water caused by the drag force exerted by the oil on the water. The radial velocity profiles and velocity fluctuations suggested the presence of secondary flow. The total shear stress showed a change in the slope of the shear stress in the region where the interface was located, which is related to the variation in the intensity of turbulent shear when passing from one phase to another. The interfaces cross-section curvature of stratified pipe flow was measured for the first time. The results indicate that it increases with the increase of the water in-situ volumetric fraction. A linear stability analysis based on the 1-D two-fluid model indicated that capillary instability can be strong enough to lead the transition mechanism from stratified to plug flow at some specific flow conditions.
id USP_c7f22fbef0029cd23cd8192a33298fbd
oai_identifier_str oai:teses.usp.br:tde-13032025-101326
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Plateau-rayleigh instability in low-viscosity ratio stratified liquid-liquid flowInstabilidade de plateau-rayleigh em escoamento líquido-líquido estratificado com baixa razão de viscosidade2-D PIV-PLIF2-D PIV-PLIFcapillary instabilitycurvatura da interfaceestabilidade hidrodinâmicaflow-pattern transitionhydrodynamic stabilityinstabilidade capilarinter-facial tensioninterface curvaturetensão interfacialtransição de padrão de escoamentoThe stratified liquid-liquid flow is one of the separate flow patterns observed in nature and many industries, including offshore subsea lines and directional wells. That flow is still an open research subject due to its complex interfacial interaction and restricted hydrodynamic stability in specific operational conditions. The literature reports different theories to explain the stratified flow transition. A recent theory suggests that the interfaces cross-section curvature is related to capillary instability, which effect is stronger at high water volumetric fractions. Nevertheless, to the best of the authors knowledge, no experimental study quantifies that effect, and there is no consensus regarding the preponderant instability mechanism for the typical flow conditions observed in practice. In this thesis, the effect of interfacial tension on the transition of horizontal stratified oil-water pipe flow with low Eötvös numbers (Eo = 2.2 and 9.7) is measured using optical techniques in a novel experimental installation designed and built during this research. Unlike most studies, mineral oil and water with a low viscosity ratio of 1.44 are used. Particle image velocimetry (PIV) was used to measure stratified oil-water pipe flow hydrodynamic quantities at the flows longitudinal plane. Geometrical and kinematic properties of the interfacial wave at the flows longitudinal and cross-section planes for stable and unstable flow conditions were determined via planar laser-induced fluorescence (PLIF). The interfacial wave speed was measured by combining planar imaging, shadow sizing techniques, and 1-D cross-correlation function. The axial velocity profiles showed an S-shape profile in the water caused by the drag force exerted by the oil on the water. The radial velocity profiles and velocity fluctuations suggested the presence of secondary flow. The total shear stress showed a change in the slope of the shear stress in the region where the interface was located, which is related to the variation in the intensity of turbulent shear when passing from one phase to another. The interfaces cross-section curvature of stratified pipe flow was measured for the first time. The results indicate that it increases with the increase of the water in-situ volumetric fraction. A linear stability analysis based on the 1-D two-fluid model indicated that capillary instability can be strong enough to lead the transition mechanism from stratified to plug flow at some specific flow conditions.O escoamento estratificado líquido-líquido é um dos padrões de escoamento de fases separadas observados na natureza e muitas industrias, incluindo linhas submarinas offshore e poços direcionais. Esse escoamento ainda é um assunto em aberto devido à sua complexa interação interfacial e estabilidade hidrodinâmica restrita em condições operacionais específicas. A literatura reporta diferentes teorias que explicam a transição do escoamento estratificado. Uma teoria sugere que a curvatura da seção transversal da interface está relacionada à instabilidade capilar, cujo efeito é mais forte em altas frações volumétricas de água. No entanto, nenhum estudo quantifica esse efeito, e não há consenso sobre o mecanismo de instabilidade preponderante para as condições típicas de escoamento observadas na prática. Nesta tese, o efeito da tensão interfacial na transição do escoamento estratificado óleo-água em tubulação com baixo número Eötvös (Eo = 2,2 e 9,7) é medido usando técnicas ópticas em uma nova instalação experimental projetada e construída durante esta pesquisa. Diferentemente da maioria dos estudos, óleo mineral e água com baixa razão de viscosidade de 1,44 são usados como fluidos de trabalho. Velocimetria por imagem de partículas (PIV) foi usada para medir as quantidades hidrodinâmicas do escoamento estratificado óleo-água no plano longitudinal do escoamento. Propriedades geométricas e cinemáticas da onda interfacial nos planos longitudinal e transversal foram determinadas via fluorescência induzida por laser planar (PLIF). A velocidade da onda interfacial foi medida combinando as técnicas de dimensionamento de sombra e a função de correlação cruzada 1-D. Os prefis de velocidade axial mostraram um perfil com forma de S na fase acuosa causado pela força de arrasto exercida pelo óleo sobre a água. Os perfis de velocidade radial e as flutuações de velocidade sugeriram a presença de fluxo secundário. A tensão de cisalhamento total mudou de inclinação na interface óleo-água, o qual está relacionado à variação na intensidade da tensão cisalhamento turbulento ao passar de uma fase à outra. A curvatura da seção transversal da interface do escoamento foi medida pela primeira vez. Os resultados indicam que esta aumenta com o aumento da fração volumétrica de água. A análise de estabilidade hidrodinâmica linear indicou que a instabilidade capilar pode ser forte o suficiente para liderar o mecanismo de transição de escoamento estratificado para escoamento pistonado sob condições específicas de escoamento.Biblioteca Digitais de Teses e Dissertações da USPRodriguez, Oscar Mauricio HernandezLugo, Pedro José Miranda2024-12-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18164/tde-13032025-101326/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-03-28T12:38:02Zoai:teses.usp.br:tde-13032025-101326Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-03-28T12:38:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Plateau-rayleigh instability in low-viscosity ratio stratified liquid-liquid flow
Instabilidade de plateau-rayleigh em escoamento líquido-líquido estratificado com baixa razão de viscosidade
title Plateau-rayleigh instability in low-viscosity ratio stratified liquid-liquid flow
spellingShingle Plateau-rayleigh instability in low-viscosity ratio stratified liquid-liquid flow
Lugo, Pedro José Miranda
2-D PIV-PLIF
2-D PIV-PLIF
capillary instability
curvatura da interface
estabilidade hidrodinâmica
flow-pattern transition
hydrodynamic stability
instabilidade capilar
inter-facial tension
interface curvature
tensão interfacial
transição de padrão de escoamento
title_short Plateau-rayleigh instability in low-viscosity ratio stratified liquid-liquid flow
title_full Plateau-rayleigh instability in low-viscosity ratio stratified liquid-liquid flow
title_fullStr Plateau-rayleigh instability in low-viscosity ratio stratified liquid-liquid flow
title_full_unstemmed Plateau-rayleigh instability in low-viscosity ratio stratified liquid-liquid flow
title_sort Plateau-rayleigh instability in low-viscosity ratio stratified liquid-liquid flow
author Lugo, Pedro José Miranda
author_facet Lugo, Pedro José Miranda
author_role author
dc.contributor.none.fl_str_mv Rodriguez, Oscar Mauricio Hernandez
dc.contributor.author.fl_str_mv Lugo, Pedro José Miranda
dc.subject.por.fl_str_mv 2-D PIV-PLIF
2-D PIV-PLIF
capillary instability
curvatura da interface
estabilidade hidrodinâmica
flow-pattern transition
hydrodynamic stability
instabilidade capilar
inter-facial tension
interface curvature
tensão interfacial
transição de padrão de escoamento
topic 2-D PIV-PLIF
2-D PIV-PLIF
capillary instability
curvatura da interface
estabilidade hidrodinâmica
flow-pattern transition
hydrodynamic stability
instabilidade capilar
inter-facial tension
interface curvature
tensão interfacial
transição de padrão de escoamento
description The stratified liquid-liquid flow is one of the separate flow patterns observed in nature and many industries, including offshore subsea lines and directional wells. That flow is still an open research subject due to its complex interfacial interaction and restricted hydrodynamic stability in specific operational conditions. The literature reports different theories to explain the stratified flow transition. A recent theory suggests that the interfaces cross-section curvature is related to capillary instability, which effect is stronger at high water volumetric fractions. Nevertheless, to the best of the authors knowledge, no experimental study quantifies that effect, and there is no consensus regarding the preponderant instability mechanism for the typical flow conditions observed in practice. In this thesis, the effect of interfacial tension on the transition of horizontal stratified oil-water pipe flow with low Eötvös numbers (Eo = 2.2 and 9.7) is measured using optical techniques in a novel experimental installation designed and built during this research. Unlike most studies, mineral oil and water with a low viscosity ratio of 1.44 are used. Particle image velocimetry (PIV) was used to measure stratified oil-water pipe flow hydrodynamic quantities at the flows longitudinal plane. Geometrical and kinematic properties of the interfacial wave at the flows longitudinal and cross-section planes for stable and unstable flow conditions were determined via planar laser-induced fluorescence (PLIF). The interfacial wave speed was measured by combining planar imaging, shadow sizing techniques, and 1-D cross-correlation function. The axial velocity profiles showed an S-shape profile in the water caused by the drag force exerted by the oil on the water. The radial velocity profiles and velocity fluctuations suggested the presence of secondary flow. The total shear stress showed a change in the slope of the shear stress in the region where the interface was located, which is related to the variation in the intensity of turbulent shear when passing from one phase to another. The interfaces cross-section curvature of stratified pipe flow was measured for the first time. The results indicate that it increases with the increase of the water in-situ volumetric fraction. A linear stability analysis based on the 1-D two-fluid model indicated that capillary instability can be strong enough to lead the transition mechanism from stratified to plug flow at some specific flow conditions.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18164/tde-13032025-101326/
url https://www.teses.usp.br/teses/disponiveis/18/18164/tde-13032025-101326/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1839839145052078080