Utilização de redes neurais para avaliação do contato roda-trilho baseada na análise de perfis.
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/3/3151/tde-13122023-105941/ |
Resumo: | A análise do contato entre roda e trilho tem sido amplamente incentivada nos últimos anos, devido à sua influência significativa na segurança e nos custos de transporte. Tradicionalmente, um dos tópicos investigados é a formação de defeitos nas superfícies de rolamento roda-trilho, corroborando na necessidade de inspeções e manutenção. Com o objetivo de minimizar tempo e custos e melhorar essas análises, técnicas de aprendizado de máquina têm sido cada vez mais utilizadas para esse fim. A avaliação da conformidade do contato entre roda e trilho auxilia na determinação do tipo de dano predominante no sistema, podendo ele ser do tipo desgaste ou fadiga de contato por rolamento (RCF, do inglês rolling contact fatigue). RCF será predominante em contatos Não-Conformes, enquanto o desgaste prevalecerá em contatos Conformes e Quase Conforme. Para a determinação do tipo de contato, é possível utilizar uma métrica chamada separação máxima (ou parâmetro s), que compreende a distância entre a superfície do trilho e da roda ao longo do centroide do trilho após o contato. O objetivo do presente trabalho é propor um modelo de Inteligência Artificial, por meio de Redes Neurais Convolucionais (CNNs), para classificar a conformidade do contato roda-trilho. Os dados de entrada são imagens dos perfis do trilho e da roda, obtidos diretamente de medições de campo, e a saída é uma classificação de acordo com o nível do contato. A base de dados foi gerada a partir de uma análise validada de elementos finitos quasi-estática em 2D (MEF), realizada no software Abaqus. A análise também exigiu o desenvolvimento de um script em Python para automatizar o processo de simulação de várias combinações de diferentes perfis de roda e trilho. Finalmente, após treinamento e validação, a CNN apresentou resultados satisfatórios, com acurácia de 93%, permitindo a avaliação direta do contato entre os perfis, sem análises complexas e custosas por meio de software de elementos finitos. |
| id |
USP_c8c491e68f0324e237fabe41acacd6ee |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-13122023-105941 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Utilização de redes neurais para avaliação do contato roda-trilho baseada na análise de perfis.Untitled in englishArtificial intelligenceContact mechanicsConvolutional networksDesgasteInteligência artificialMecânica do contatoRedes neuraisRoda-trilhoWearWheel-railA análise do contato entre roda e trilho tem sido amplamente incentivada nos últimos anos, devido à sua influência significativa na segurança e nos custos de transporte. Tradicionalmente, um dos tópicos investigados é a formação de defeitos nas superfícies de rolamento roda-trilho, corroborando na necessidade de inspeções e manutenção. Com o objetivo de minimizar tempo e custos e melhorar essas análises, técnicas de aprendizado de máquina têm sido cada vez mais utilizadas para esse fim. A avaliação da conformidade do contato entre roda e trilho auxilia na determinação do tipo de dano predominante no sistema, podendo ele ser do tipo desgaste ou fadiga de contato por rolamento (RCF, do inglês rolling contact fatigue). RCF será predominante em contatos Não-Conformes, enquanto o desgaste prevalecerá em contatos Conformes e Quase Conforme. Para a determinação do tipo de contato, é possível utilizar uma métrica chamada separação máxima (ou parâmetro s), que compreende a distância entre a superfície do trilho e da roda ao longo do centroide do trilho após o contato. O objetivo do presente trabalho é propor um modelo de Inteligência Artificial, por meio de Redes Neurais Convolucionais (CNNs), para classificar a conformidade do contato roda-trilho. Os dados de entrada são imagens dos perfis do trilho e da roda, obtidos diretamente de medições de campo, e a saída é uma classificação de acordo com o nível do contato. A base de dados foi gerada a partir de uma análise validada de elementos finitos quasi-estática em 2D (MEF), realizada no software Abaqus. A análise também exigiu o desenvolvimento de um script em Python para automatizar o processo de simulação de várias combinações de diferentes perfis de roda e trilho. Finalmente, após treinamento e validação, a CNN apresentou resultados satisfatórios, com acurácia de 93%, permitindo a avaliação direta do contato entre os perfis, sem análises complexas e custosas por meio de software de elementos finitos.The analysis of wheel-rail contact has been widely encouraged in recent years, due to its significant influence on safety and transportation costs. Traditionally, one of those investigated is the formation of defects in the wheel-rail bearing surfaces, corroborating the need for inspections and maintenance. In order to minimize time and costs and improve analyses, machine learning techniques have been increasingly used for this purpose. The evaluation of the conformity of the contact between wheel and rail helps to take advantage of the predominant type of damage in the system, allowing it to be wear or rolling contact fatigue (RCF). RCF will predominate on Non- Conformal contacts, while wear will prevail on Conformal and Closely Conformal contacts. To determine the type of contact, it is possible to use a metric called maximum separation (or s parameter), which comprises the distance between the surface of the rail and the wheel along the centroid of the rail after contact. The objective of this work is to propose an Artificial Intelligence model, through Convolutional Neural Networks (CNNs), to classify the conformity of the wheel-rail contact. The inputs data are rail and wheel profiles images, obtained directly from field controls, and the output is a classification according to the level of contact. The database was generated from a validated 2D quasi-static finite element (FE) analysis performed in the Abaqus software. The analysis also tracks the development of a Python script to automate the process of simulating various combinations of different wheel and rail profiles. Finally, after training and validation, CNN presented advanced results, with an accuracy of 93%, allowing the direct evaluation of the contact between the profiles, without complex and costly analyzes using finite element software.Biblioteca Digitais de Teses e Dissertações da USPDriemeier, LarissaLopes, Modesto Valci Moreira2023-10-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3151/tde-13122023-105941/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-13122023-105941Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Utilização de redes neurais para avaliação do contato roda-trilho baseada na análise de perfis. Untitled in english |
| title |
Utilização de redes neurais para avaliação do contato roda-trilho baseada na análise de perfis. |
| spellingShingle |
Utilização de redes neurais para avaliação do contato roda-trilho baseada na análise de perfis. Lopes, Modesto Valci Moreira Artificial intelligence Contact mechanics Convolutional networks Desgaste Inteligência artificial Mecânica do contato Redes neurais Roda-trilho Wear Wheel-rail |
| title_short |
Utilização de redes neurais para avaliação do contato roda-trilho baseada na análise de perfis. |
| title_full |
Utilização de redes neurais para avaliação do contato roda-trilho baseada na análise de perfis. |
| title_fullStr |
Utilização de redes neurais para avaliação do contato roda-trilho baseada na análise de perfis. |
| title_full_unstemmed |
Utilização de redes neurais para avaliação do contato roda-trilho baseada na análise de perfis. |
| title_sort |
Utilização de redes neurais para avaliação do contato roda-trilho baseada na análise de perfis. |
| author |
Lopes, Modesto Valci Moreira |
| author_facet |
Lopes, Modesto Valci Moreira |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Driemeier, Larissa |
| dc.contributor.author.fl_str_mv |
Lopes, Modesto Valci Moreira |
| dc.subject.por.fl_str_mv |
Artificial intelligence Contact mechanics Convolutional networks Desgaste Inteligência artificial Mecânica do contato Redes neurais Roda-trilho Wear Wheel-rail |
| topic |
Artificial intelligence Contact mechanics Convolutional networks Desgaste Inteligência artificial Mecânica do contato Redes neurais Roda-trilho Wear Wheel-rail |
| description |
A análise do contato entre roda e trilho tem sido amplamente incentivada nos últimos anos, devido à sua influência significativa na segurança e nos custos de transporte. Tradicionalmente, um dos tópicos investigados é a formação de defeitos nas superfícies de rolamento roda-trilho, corroborando na necessidade de inspeções e manutenção. Com o objetivo de minimizar tempo e custos e melhorar essas análises, técnicas de aprendizado de máquina têm sido cada vez mais utilizadas para esse fim. A avaliação da conformidade do contato entre roda e trilho auxilia na determinação do tipo de dano predominante no sistema, podendo ele ser do tipo desgaste ou fadiga de contato por rolamento (RCF, do inglês rolling contact fatigue). RCF será predominante em contatos Não-Conformes, enquanto o desgaste prevalecerá em contatos Conformes e Quase Conforme. Para a determinação do tipo de contato, é possível utilizar uma métrica chamada separação máxima (ou parâmetro s), que compreende a distância entre a superfície do trilho e da roda ao longo do centroide do trilho após o contato. O objetivo do presente trabalho é propor um modelo de Inteligência Artificial, por meio de Redes Neurais Convolucionais (CNNs), para classificar a conformidade do contato roda-trilho. Os dados de entrada são imagens dos perfis do trilho e da roda, obtidos diretamente de medições de campo, e a saída é uma classificação de acordo com o nível do contato. A base de dados foi gerada a partir de uma análise validada de elementos finitos quasi-estática em 2D (MEF), realizada no software Abaqus. A análise também exigiu o desenvolvimento de um script em Python para automatizar o processo de simulação de várias combinações de diferentes perfis de roda e trilho. Finalmente, após treinamento e validação, a CNN apresentou resultados satisfatórios, com acurácia de 93%, permitindo a avaliação direta do contato entre os perfis, sem análises complexas e custosas por meio de software de elementos finitos. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-10-25 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3151/tde-13122023-105941/ |
| url |
https://www.teses.usp.br/teses/disponiveis/3/3151/tde-13122023-105941/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1818279195075149824 |