Water security monitoring and forecasting using artificial intelligence: application of artificial neural networks in hydrological ecosystem services modeling
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/91/91131/tde-10102024-105155/ |
Resumo: | This research work explores the use of artificial neural networks (ANN) in hydrological modeling. The study is based in 4 different experiments to test the ability of ANN to solve common hydrology modeling tasks usually addressed by the use of rational or empirical modeling. These 4 experiments start under control situations, where hydrological data generated by hydrological and water-energy balance models are used to test the capacity of ANN to infer or learn the concepts behind our own understanding and modeling capacities of these processes, and increase in complexity by replacing control data with real world data where inexact, incomplete and multi-modal (field instrumentation measurements, satellite imagery capture) data is found. In this study the ANN were evaluated also in terms of their own architecture by using 3 of the most common type of neural networks (NN) usually associated with tabular and time series data analysis: MLP-Feedforward NN, LSTM-Recurrent NN and Transformers based NN. While the trend at the moment of writing this document regarding earth systems modeling, which certainly include the hydrology topic of this research, is to favor high performance and cloud computing approaches, all the experiments in this research were designed and executed using consumer grade equipment and free access computing resources. The results of these experiments demonstrated the common hydrological modeling tasks including water balance modeling and forecast, usually addressed by the use of dynamic physically-based (semi)distributed models, can be accomplished by the use of ANN outperforming model performance metrics (NSE index) in published results of previous USP dissertations, and considerably reducing the amount of time required to produce results. However, the most interesting aspect of using ANN in hydrological modeling is the capability to model processes or time frames for which few or no hydrological models are available, or by using biophysical data available from remote sensing that is incompatible with rational models commonly used. Finally, while this research explores the potential to use these technologies in addressing common hydrological modeling task, and in some cases demonstrate a significant advantage on using these tools instead of traditional hydrological models, the fundamental question of how can this improve water security is only partially addressed because improving our water resources management is not only a technical challenge. While is true that having faster and/or more precise forecast of hydrological processes like peak flows, floods or droughts by using ANN can suppose an improvement regarding information access, any water security improvement as a whole depends in the end on the capacity of governance institutions to use this and other available scientific insights on their decision making process. |
| id |
USP_c8db74430f3486f484a0586a1d7e6ca4 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-10102024-105155 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Water security monitoring and forecasting using artificial intelligence: application of artificial neural networks in hydrological ecosystem services modelingMonitoramento e previsão de segurança hídrica utilizando inteligência artificial: aplicação de redes neurais artificiais na modelagem de serviços ecossistêmicos hidrológicosArtificial intelligenceHydrological modelingInteligência artificialModelagem hidrológicaRemote sensingSensoriamento remotoThis research work explores the use of artificial neural networks (ANN) in hydrological modeling. The study is based in 4 different experiments to test the ability of ANN to solve common hydrology modeling tasks usually addressed by the use of rational or empirical modeling. These 4 experiments start under control situations, where hydrological data generated by hydrological and water-energy balance models are used to test the capacity of ANN to infer or learn the concepts behind our own understanding and modeling capacities of these processes, and increase in complexity by replacing control data with real world data where inexact, incomplete and multi-modal (field instrumentation measurements, satellite imagery capture) data is found. In this study the ANN were evaluated also in terms of their own architecture by using 3 of the most common type of neural networks (NN) usually associated with tabular and time series data analysis: MLP-Feedforward NN, LSTM-Recurrent NN and Transformers based NN. While the trend at the moment of writing this document regarding earth systems modeling, which certainly include the hydrology topic of this research, is to favor high performance and cloud computing approaches, all the experiments in this research were designed and executed using consumer grade equipment and free access computing resources. The results of these experiments demonstrated the common hydrological modeling tasks including water balance modeling and forecast, usually addressed by the use of dynamic physically-based (semi)distributed models, can be accomplished by the use of ANN outperforming model performance metrics (NSE index) in published results of previous USP dissertations, and considerably reducing the amount of time required to produce results. However, the most interesting aspect of using ANN in hydrological modeling is the capability to model processes or time frames for which few or no hydrological models are available, or by using biophysical data available from remote sensing that is incompatible with rational models commonly used. Finally, while this research explores the potential to use these technologies in addressing common hydrological modeling task, and in some cases demonstrate a significant advantage on using these tools instead of traditional hydrological models, the fundamental question of how can this improve water security is only partially addressed because improving our water resources management is not only a technical challenge. While is true that having faster and/or more precise forecast of hydrological processes like peak flows, floods or droughts by using ANN can suppose an improvement regarding information access, any water security improvement as a whole depends in the end on the capacity of governance institutions to use this and other available scientific insights on their decision making process.Este trabalho de pesquisa explora o uso de redes neurais artificiais (RNAs) em modelagem hidrológica. O estudo baseia-se em quatro experimentos distintos para testar a capacidade das RNAs de resolver tarefas comuns de modelagem hidrológica, normalmente abordadas pelo uso de modelagem racional ou empírica. Esses quatro experimentos começam em situações de controle, onde dados hidrológicos gerados por modelos hidrológicos e de balanço hídrico-energético são usados para testar a capacidade das RNAs de inferir ou aprender os conceitos por trás de nosso próprio entendimento e capacidade de modelagem desses processos, e aumentam em complexidade substituindo dados de controle por dados do mundo real onde dados inexatos, incompletos e multimodais (medições de instrumentação de campo, captura de imagens de satélite) são encontrados. Neste estudo, as RNAs também foram avaliadas em termos de sua própria arquitetura usando três dos tipos mais comuns de redes neurais (RNs) normalmente associados à análise de dados tabulares e de séries temporais: MLP-Feedforward RN, LSTM-RN recorrente e Transformers baseadas em RN. Embora a tendência no momento da escrita deste documento em relação à modelagem de sistemas terrestres, que certamente inclui o tópico de hidrologia desta pesquisa, seja favorecer abordagens de alto desempenho e computação em nuvem, todos os experimentos neste trabalho foram projetados e executados usando equipamentos de consumo e recursos de computação de acesso gratuito. Os resultados desses experimentos demonstraram que as tarefas comuns de modelagem hidrológica, incluindo modelagem e previsão de balanço hídrico, normalmente abordadas pelo uso de modelos dinâmicos semi ou distribuídos, podem ser realizadas pelo uso de RNAs superando as métricas de desempenho do modelo (índice NSE) em resultados publicados de dissertações anteriores da USP e reduzindo consideravelmente o tempo necessário para produzir resultados. No entanto, o aspecto mais interessante da utilização de RNAs em modelagem hidrológica é a capacidade de modelar processos ou intervalos de tempo para os quais poucos ou nenhum modelo hidrológico está disponível, ou utilizando dados biofísicos disponíveis do sensoriamento remoto que são incompatíveis com modelos racionais comumente utilizados. Finalmente, embora esta pesquisa explore o potencial de usar essas tecnologias para abordar tarefas comuns de modelagem hidrológica e, em alguns casos, demonstra uma vantagem significativa em usar essas ferramentas em vez de modelos hidrológicos tradicionais, a questão fundamental de como isso pode melhorar a segurança hídrica é apenas parcialmente abordada porque a melhoria do gerenciamento dos recursos hídricos não é apenas um desafio técnico. Embora seja verdade que ter previsões mais rápidas e/ou mais precisas de processos hidrológicos como picos de vazão, inundações ou secas usando RNAs possa supor uma melhoria no acesso à informação, qualquer melhoria da segurança hídrica como um todo depende no final da capacidade das instituições de governança de usar este e outra evidência baseada em ciência nos processos de tomada de decisão sobre a gestão dos nossos recursos hídricos.Biblioteca Digitais de Teses e Dissertações da USPFolegatti, Marcos ViniciusLeon Sarmiento, Jorge Eduardo 2024-07-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/91/91131/tde-10102024-105155/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-10T19:37:02Zoai:teses.usp.br:tde-10102024-105155Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-10T19:37:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Water security monitoring and forecasting using artificial intelligence: application of artificial neural networks in hydrological ecosystem services modeling Monitoramento e previsão de segurança hídrica utilizando inteligência artificial: aplicação de redes neurais artificiais na modelagem de serviços ecossistêmicos hidrológicos |
| title |
Water security monitoring and forecasting using artificial intelligence: application of artificial neural networks in hydrological ecosystem services modeling |
| spellingShingle |
Water security monitoring and forecasting using artificial intelligence: application of artificial neural networks in hydrological ecosystem services modeling Leon Sarmiento, Jorge Eduardo Artificial intelligence Hydrological modeling Inteligência artificial Modelagem hidrológica Remote sensing Sensoriamento remoto |
| title_short |
Water security monitoring and forecasting using artificial intelligence: application of artificial neural networks in hydrological ecosystem services modeling |
| title_full |
Water security monitoring and forecasting using artificial intelligence: application of artificial neural networks in hydrological ecosystem services modeling |
| title_fullStr |
Water security monitoring and forecasting using artificial intelligence: application of artificial neural networks in hydrological ecosystem services modeling |
| title_full_unstemmed |
Water security monitoring and forecasting using artificial intelligence: application of artificial neural networks in hydrological ecosystem services modeling |
| title_sort |
Water security monitoring and forecasting using artificial intelligence: application of artificial neural networks in hydrological ecosystem services modeling |
| author |
Leon Sarmiento, Jorge Eduardo |
| author_facet |
Leon Sarmiento, Jorge Eduardo |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Folegatti, Marcos Vinicius |
| dc.contributor.author.fl_str_mv |
Leon Sarmiento, Jorge Eduardo |
| dc.subject.por.fl_str_mv |
Artificial intelligence Hydrological modeling Inteligência artificial Modelagem hidrológica Remote sensing Sensoriamento remoto |
| topic |
Artificial intelligence Hydrological modeling Inteligência artificial Modelagem hidrológica Remote sensing Sensoriamento remoto |
| description |
This research work explores the use of artificial neural networks (ANN) in hydrological modeling. The study is based in 4 different experiments to test the ability of ANN to solve common hydrology modeling tasks usually addressed by the use of rational or empirical modeling. These 4 experiments start under control situations, where hydrological data generated by hydrological and water-energy balance models are used to test the capacity of ANN to infer or learn the concepts behind our own understanding and modeling capacities of these processes, and increase in complexity by replacing control data with real world data where inexact, incomplete and multi-modal (field instrumentation measurements, satellite imagery capture) data is found. In this study the ANN were evaluated also in terms of their own architecture by using 3 of the most common type of neural networks (NN) usually associated with tabular and time series data analysis: MLP-Feedforward NN, LSTM-Recurrent NN and Transformers based NN. While the trend at the moment of writing this document regarding earth systems modeling, which certainly include the hydrology topic of this research, is to favor high performance and cloud computing approaches, all the experiments in this research were designed and executed using consumer grade equipment and free access computing resources. The results of these experiments demonstrated the common hydrological modeling tasks including water balance modeling and forecast, usually addressed by the use of dynamic physically-based (semi)distributed models, can be accomplished by the use of ANN outperforming model performance metrics (NSE index) in published results of previous USP dissertations, and considerably reducing the amount of time required to produce results. However, the most interesting aspect of using ANN in hydrological modeling is the capability to model processes or time frames for which few or no hydrological models are available, or by using biophysical data available from remote sensing that is incompatible with rational models commonly used. Finally, while this research explores the potential to use these technologies in addressing common hydrological modeling task, and in some cases demonstrate a significant advantage on using these tools instead of traditional hydrological models, the fundamental question of how can this improve water security is only partially addressed because improving our water resources management is not only a technical challenge. While is true that having faster and/or more precise forecast of hydrological processes like peak flows, floods or droughts by using ANN can suppose an improvement regarding information access, any water security improvement as a whole depends in the end on the capacity of governance institutions to use this and other available scientific insights on their decision making process. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-07-31 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/91/91131/tde-10102024-105155/ |
| url |
https://www.teses.usp.br/teses/disponiveis/91/91131/tde-10102024-105155/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1818279186711707648 |