Geometric bounds for approximate quantum error correction and a few words about holography
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/76/76134/tde-14102022-090414/ |
Resumo: | In this work, we investigate some applications of quantum information theory motivated by high-energy physics. There is strong evidence suggesting that entanglement is deeply connected with the geometry of spacetime, which leads to surprising applications of quantum information theory in the AdS/CFT correspondence and holography. We start by reviewing the fundamental concepts of the AdS/CFT correspondence which play a key role in bulk-boundary reconstruction, in particular, we explore some features which suggest that one must interpret the encoding of information in the correspondence as a quantum errorcorrecting code. We discuss the fundamentals of error correction, exploring the formalisms of operator algebra and stabilizer codes. Then, we establish the concrete connection between the two main concepts by showing examples of quantum error-correcting codes that serve as a toy model for AdS/CFT. We illustrate how the 3-qutrit code and the HaPPY code can be powerful tools to explore the correspondence analytically and to solve apparent paradoxes. Following recent results, using quantum error correction, that suggest an intrinsic incompatibility of quantum gravity with global symmetries, we explore approximate error-correcting codes and asymmetric codes as a way to better understand the consequences in a quantum resource-theoretic way. Finally, we discuss our original contribution: geometric bounds for approximate quantum error correction. We calculate our bounds for three typical quantum channels that model the lack of exactness in error correction, namely, dephasing, depolarizing, and amplitude damping channels. The implications of our bounds for AdS/CFT are somewhat elusive; nonetheless, we provide a new approach to benchmark approximations in error correction performance, which may be of high interest for AdS/CFT and its corresponding absence of global symmetries. |
| id |
USP_c96f8ec0fa9b56126e6dbcd9c95fee41 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-14102022-090414 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Geometric bounds for approximate quantum error correction and a few words about holographyDesigualdades geométricas para correção de erros aproximada e algumas palavras sobre holografiaAdS/CFTAdS/CFTCorreção de errosQuantum error correctionQuantum information theoryQuantum resource theoryTeoria de informação quânticaTeoria quântica de recursosIn this work, we investigate some applications of quantum information theory motivated by high-energy physics. There is strong evidence suggesting that entanglement is deeply connected with the geometry of spacetime, which leads to surprising applications of quantum information theory in the AdS/CFT correspondence and holography. We start by reviewing the fundamental concepts of the AdS/CFT correspondence which play a key role in bulk-boundary reconstruction, in particular, we explore some features which suggest that one must interpret the encoding of information in the correspondence as a quantum errorcorrecting code. We discuss the fundamentals of error correction, exploring the formalisms of operator algebra and stabilizer codes. Then, we establish the concrete connection between the two main concepts by showing examples of quantum error-correcting codes that serve as a toy model for AdS/CFT. We illustrate how the 3-qutrit code and the HaPPY code can be powerful tools to explore the correspondence analytically and to solve apparent paradoxes. Following recent results, using quantum error correction, that suggest an intrinsic incompatibility of quantum gravity with global symmetries, we explore approximate error-correcting codes and asymmetric codes as a way to better understand the consequences in a quantum resource-theoretic way. Finally, we discuss our original contribution: geometric bounds for approximate quantum error correction. We calculate our bounds for three typical quantum channels that model the lack of exactness in error correction, namely, dephasing, depolarizing, and amplitude damping channels. The implications of our bounds for AdS/CFT are somewhat elusive; nonetheless, we provide a new approach to benchmark approximations in error correction performance, which may be of high interest for AdS/CFT and its corresponding absence of global symmetries.Neste trabalho, investigamos algumas aplicações de teoria de informação quântica motivadas pela física de altas energias. Há fortes evidências apontando uma profunda conexão entre emaranhamento e a geometria do espaço-tempo, nos levando à aplicações surpreendentes de teoria de informação quântica na correspondência AdS/CFT e em holografia. Iniciamos com uma revisão dos conceitos fundamentais acerca da correspondência AdS/CFT no tocante à reconstrução bulk-boundary, em particular, exploramos alguns aspectos que sugerem que a codificação de informação na correspondência é análoga ao que ocorre em códigos de correção de erros. Discutimos os fundamentos de correção de erros, explorando os formalismos de álgebra de operadores e códigos de estabilizadores. Em seguida, estabelecemos a relação concreta entre as duas ideias principais através de exemplos de códigos de correção de erros que servem de toy model para AdS/CFT. Ilustramos como o código de 3-qutrits e o código HaPPY podem ser ferramentas poderosas para explorar a correspondência de forma analítica e para solucionar aparentes paradoxos. Seguindo resultados recentes, usando de correção de erros, que sugerem uma incompatibilidade intrínseca entre gravitação quântica e simetrias globais, exploramos correção de erros aproximada e códigos com assimetria como uma forma de melhor entender as consequências sob o ponto de vista de teorias quânticas de recursos. Por fim, discutimos nossa contribuição original: desigualdades geométricas para correção de erros aproximada. Calculamos nossas desigualdades para três canais quânticos típicos que modelam a falta de exatidão em correção de erros, a saber, dephasing, depolarizing, e amplitude damping. As implicações de nossas desigualdades para AdS/CFT permanecem difusas; de todo modo, fornecemos uma nova abordagem para classificar o desempenho em códigos aproximados, o que pode ser de elevado interesse para AdS/CFT e ausência de simetrias globais.Biblioteca Digitais de Teses e Dissertações da USPPinto, Diogo de Oliveira SoaresFiusa, Guilherme Camargo2022-09-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-14102022-090414/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-22T23:57:03Zoai:teses.usp.br:tde-14102022-090414Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-22T23:57:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Geometric bounds for approximate quantum error correction and a few words about holography Desigualdades geométricas para correção de erros aproximada e algumas palavras sobre holografia |
| title |
Geometric bounds for approximate quantum error correction and a few words about holography |
| spellingShingle |
Geometric bounds for approximate quantum error correction and a few words about holography Fiusa, Guilherme Camargo AdS/CFT AdS/CFT Correção de erros Quantum error correction Quantum information theory Quantum resource theory Teoria de informação quântica Teoria quântica de recursos |
| title_short |
Geometric bounds for approximate quantum error correction and a few words about holography |
| title_full |
Geometric bounds for approximate quantum error correction and a few words about holography |
| title_fullStr |
Geometric bounds for approximate quantum error correction and a few words about holography |
| title_full_unstemmed |
Geometric bounds for approximate quantum error correction and a few words about holography |
| title_sort |
Geometric bounds for approximate quantum error correction and a few words about holography |
| author |
Fiusa, Guilherme Camargo |
| author_facet |
Fiusa, Guilherme Camargo |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Pinto, Diogo de Oliveira Soares |
| dc.contributor.author.fl_str_mv |
Fiusa, Guilherme Camargo |
| dc.subject.por.fl_str_mv |
AdS/CFT AdS/CFT Correção de erros Quantum error correction Quantum information theory Quantum resource theory Teoria de informação quântica Teoria quântica de recursos |
| topic |
AdS/CFT AdS/CFT Correção de erros Quantum error correction Quantum information theory Quantum resource theory Teoria de informação quântica Teoria quântica de recursos |
| description |
In this work, we investigate some applications of quantum information theory motivated by high-energy physics. There is strong evidence suggesting that entanglement is deeply connected with the geometry of spacetime, which leads to surprising applications of quantum information theory in the AdS/CFT correspondence and holography. We start by reviewing the fundamental concepts of the AdS/CFT correspondence which play a key role in bulk-boundary reconstruction, in particular, we explore some features which suggest that one must interpret the encoding of information in the correspondence as a quantum errorcorrecting code. We discuss the fundamentals of error correction, exploring the formalisms of operator algebra and stabilizer codes. Then, we establish the concrete connection between the two main concepts by showing examples of quantum error-correcting codes that serve as a toy model for AdS/CFT. We illustrate how the 3-qutrit code and the HaPPY code can be powerful tools to explore the correspondence analytically and to solve apparent paradoxes. Following recent results, using quantum error correction, that suggest an intrinsic incompatibility of quantum gravity with global symmetries, we explore approximate error-correcting codes and asymmetric codes as a way to better understand the consequences in a quantum resource-theoretic way. Finally, we discuss our original contribution: geometric bounds for approximate quantum error correction. We calculate our bounds for three typical quantum channels that model the lack of exactness in error correction, namely, dephasing, depolarizing, and amplitude damping channels. The implications of our bounds for AdS/CFT are somewhat elusive; nonetheless, we provide a new approach to benchmark approximations in error correction performance, which may be of high interest for AdS/CFT and its corresponding absence of global symmetries. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-09-06 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/76/76134/tde-14102022-090414/ |
| url |
https://www.teses.usp.br/teses/disponiveis/76/76134/tde-14102022-090414/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258131859505152 |