Depth images\' processing to improve the performance of sows through early detection of lameness and changes in body condition score

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Condotta, Isabella Cardoso Ferreira da Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11152/tde-29082019-154917/
Resumo: The observation, control and the maintenance of the physical condition of sows in acceptable levels are critical to maintain the animal welfare and production in appropriate standards. Lameness causes pain making locomotion difficult. However, lameness is a common disorder in sows that causes negative impacts in both welfare and production. Since the animals that demonstrate this problem, have a smaller number of born-alive piglets, fewer gestation per year and are removed from the herd at a younger age than the ideal. In addition, it is industry practice to limit feed sows to ensure that they remain at an ideal condition score. It is known that, during gestation, each sow should receive a different amount of food according to its body condition. Underweight animals have nutritional deficiency and lower number of piglets per litter. On the other hand, overweight sows have an abnormal development of mammary glands, reducing the amount of milk produced during lactation, causing economic losses. However, moving sows to group gestation makes it difficult to monitor condition score in gestating sows. Both the detection of lameness and the classification of body condition are currently assessed using subjective methods, which is time consuming and difficult to accurately complete. Therefore, the early recognition of animals that present physical condition outside the standards is important to prevent production losses caused by both the aggravation of the conditions presented and the impact on the animals\' welfare. The objective of this project is to obtain three characteristics (body condition score, mass and backfat thickness) through depth images, that proved to be effective on the acquisition of these features in other animals (boars and cows). The second objective is to develop a method for early detection of lameness using the kinematic approach, that has been generating good results and which difficulties have the potential to be reduced by using depth images instead of the method of reflective markers currently used. To predict body condition, a multiple linear regression was obtained using the minor axis of the ellipse fitted around sow\'s body, the width at shoulders, and the angle, of the last rib\'s curvature. To predict backfat, a multiple linear regression was performed using the height of last rib\'s curvature, the perimeter of sow\'s body, the major axis of the ellipse fitted around sow\'s body, the length from snout to rump, and the predicted body condition score. It was possible to obtain the body mass with a simple linear regression using the projected volume of the sows\' body. For lameness detection, three models presented the best accuracy (76.9%): linear discriminant analysis, fine 1-nearest neighbor, and weighted 10-nearest neighbors. The input variables used on the models were obtained from depth videos (number, time, and length of steps for each of the four regions analyzed - left and right shoulders and left and right hips; total walk time; and number of local maxima for head region). As a result of these studies, it has been demonstrated that a depth camera can be used to automate the weight, condition score, backfat thickness, and lameness acquisition/detection in gestating and lactating sows.
id USP_c99ea3cb8de4c265e2d99c6863965e57
oai_identifier_str oai:teses.usp.br:tde-29082019-154917
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Depth images\' processing to improve the performance of sows through early detection of lameness and changes in body condition scoreProcessamento de imagens em profundidade para melhora do desempenho de matrizes suínas por meio da detecção precoce de claudicação e de alterações no escore de condição corporalBem-estarDimensionsDimensõesPrecision livestock farmingTempo de vooTime-of-flightWell-beingZootecnia de precisãoThe observation, control and the maintenance of the physical condition of sows in acceptable levels are critical to maintain the animal welfare and production in appropriate standards. Lameness causes pain making locomotion difficult. However, lameness is a common disorder in sows that causes negative impacts in both welfare and production. Since the animals that demonstrate this problem, have a smaller number of born-alive piglets, fewer gestation per year and are removed from the herd at a younger age than the ideal. In addition, it is industry practice to limit feed sows to ensure that they remain at an ideal condition score. It is known that, during gestation, each sow should receive a different amount of food according to its body condition. Underweight animals have nutritional deficiency and lower number of piglets per litter. On the other hand, overweight sows have an abnormal development of mammary glands, reducing the amount of milk produced during lactation, causing economic losses. However, moving sows to group gestation makes it difficult to monitor condition score in gestating sows. Both the detection of lameness and the classification of body condition are currently assessed using subjective methods, which is time consuming and difficult to accurately complete. Therefore, the early recognition of animals that present physical condition outside the standards is important to prevent production losses caused by both the aggravation of the conditions presented and the impact on the animals\' welfare. The objective of this project is to obtain three characteristics (body condition score, mass and backfat thickness) through depth images, that proved to be effective on the acquisition of these features in other animals (boars and cows). The second objective is to develop a method for early detection of lameness using the kinematic approach, that has been generating good results and which difficulties have the potential to be reduced by using depth images instead of the method of reflective markers currently used. To predict body condition, a multiple linear regression was obtained using the minor axis of the ellipse fitted around sow\'s body, the width at shoulders, and the angle, of the last rib\'s curvature. To predict backfat, a multiple linear regression was performed using the height of last rib\'s curvature, the perimeter of sow\'s body, the major axis of the ellipse fitted around sow\'s body, the length from snout to rump, and the predicted body condition score. It was possible to obtain the body mass with a simple linear regression using the projected volume of the sows\' body. For lameness detection, three models presented the best accuracy (76.9%): linear discriminant analysis, fine 1-nearest neighbor, and weighted 10-nearest neighbors. The input variables used on the models were obtained from depth videos (number, time, and length of steps for each of the four regions analyzed - left and right shoulders and left and right hips; total walk time; and number of local maxima for head region). As a result of these studies, it has been demonstrated that a depth camera can be used to automate the weight, condition score, backfat thickness, and lameness acquisition/detection in gestating and lactating sows.A observação, o controle e a manutenção das condições físicas de matrizes suínas em níveis aceitáveis são fundamentais para manter o bem-estar animal e a produção em padrões adequados. A claudicação causa dor e dificuldade de locomoção e, no entanto, é uma desordem comum em matrizes suínas que, além do impacto negativo no bem-estar, gera, também, grandes impactos na produção, uma vez que os animais que demonstram esse problema, apresentam um menor número de leitões nascidos vivos, menor número de partos por ano e são removidas do rebanho a uma idade mais jovem do que a ideal. Sabe-se, ainda, que, durante a gestação, cada matriz deve receber uma quantidade de ração diferenciada de acordo com sua condição corporal. Animais abaixo do peso apresentam deficiência nutricional e menor número de leitões nascidos por ninhada. Já as matrizes com excesso de peso apresentam um desenvolvimento anormal das glândulas mamárias, reduzindo a quantidade de leite produzida durante a lactação, acarretando em perdas econômicas. Tanto a detecção da claudicação quanto a classificação da condição corporal são feitos por meios subjetivos e dependentes da opinião pessoal do tratador, o que pode gerar divergências entre as classificações dadas por cada indivíduo. Destaca-se, portanto, a importância do reconhecimento precoce de animais que apresentam condições físicas fora dos padrões exigidos, visando a prevenção de perdas produtivas causadas tanto pelo agravamento das condições apresentadas quanto pelo grande impacto no bem-estar dos animais. Tendo-se isso em vista, o presente trabalho visou obter três características (escore de condição corporal, massa corporal e espessura de toucinho) por meio de imagens em profundidade, que se mostraram eficazes na obtenção dessas características em outros animais (suínos machos não- castrados e vacas leiteiras). Além disso, buscou-se desenvolver um método para a detecção precoce de claudicação em matrizes suínas, utilizando-se a abordagem da cinemática dos animais, que vem dando bons resultados e cujas dificuldades têm potencial para serem sanadas por meio do uso de imagens em profundidade em vez do método de marcadores reflexivos utilizado atualmente. Para predizer a condição corporal, uma regressão linear múltipla foi obtida usando o menor eixo da elipse ajustada ao redor do corpo da matriz suína, a largura dos ombros e o ângulo da curvatura da última costela. Para predizer a espessura de toucinho, foi realizada uma regressão linear múltipla usando a altura curvatura da última da costela, o perímetro do corpo da matriz, o maior eixo da elipse ajustada, o comprimento do focinho à cauda e o escore predito da condição corporal. Foi possível obter a massa corporal com uma regressão linear simples usando o volume projetado do corpo das matrizes. Para detecção de claudicação, três modelos apresentaram a melhor precisão (76,9%): análise discriminante linear, 1 vizinho mais próximo e 10 vizinhos mais próximos. As variáveis de entrada utilizadas nos modelos foram obtidas a partir de vídeos em profundidade (número, tempo e comprimento de passos para cada uma das quatro regiões analisadas-ombros esquerdo e direito e quadris esquerdo e direito; tempo total de caminhada e número de máximos locais para a região da cabeça). Como resultado desses estudos, observou-se que câmeras em profundidade podem ser utilizadas na automação de medidas de peso, condição corporal, espessura de toucinho e claudicação de matrizes suínas.Biblioteca Digitais de Teses e Dissertações da USPMiranda, Késia Oliveira da SilvaCondotta, Isabella Cardoso Ferreira da Silva2019-06-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11152/tde-29082019-154917/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-08-28T12:57:42Zoai:teses.usp.br:tde-29082019-154917Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-08-28T12:57:42Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Depth images\' processing to improve the performance of sows through early detection of lameness and changes in body condition score
Processamento de imagens em profundidade para melhora do desempenho de matrizes suínas por meio da detecção precoce de claudicação e de alterações no escore de condição corporal
title Depth images\' processing to improve the performance of sows through early detection of lameness and changes in body condition score
spellingShingle Depth images\' processing to improve the performance of sows through early detection of lameness and changes in body condition score
Condotta, Isabella Cardoso Ferreira da Silva
Bem-estar
Dimensions
Dimensões
Precision livestock farming
Tempo de voo
Time-of-flight
Well-being
Zootecnia de precisão
title_short Depth images\' processing to improve the performance of sows through early detection of lameness and changes in body condition score
title_full Depth images\' processing to improve the performance of sows through early detection of lameness and changes in body condition score
title_fullStr Depth images\' processing to improve the performance of sows through early detection of lameness and changes in body condition score
title_full_unstemmed Depth images\' processing to improve the performance of sows through early detection of lameness and changes in body condition score
title_sort Depth images\' processing to improve the performance of sows through early detection of lameness and changes in body condition score
author Condotta, Isabella Cardoso Ferreira da Silva
author_facet Condotta, Isabella Cardoso Ferreira da Silva
author_role author
dc.contributor.none.fl_str_mv Miranda, Késia Oliveira da Silva
dc.contributor.author.fl_str_mv Condotta, Isabella Cardoso Ferreira da Silva
dc.subject.por.fl_str_mv Bem-estar
Dimensions
Dimensões
Precision livestock farming
Tempo de voo
Time-of-flight
Well-being
Zootecnia de precisão
topic Bem-estar
Dimensions
Dimensões
Precision livestock farming
Tempo de voo
Time-of-flight
Well-being
Zootecnia de precisão
description The observation, control and the maintenance of the physical condition of sows in acceptable levels are critical to maintain the animal welfare and production in appropriate standards. Lameness causes pain making locomotion difficult. However, lameness is a common disorder in sows that causes negative impacts in both welfare and production. Since the animals that demonstrate this problem, have a smaller number of born-alive piglets, fewer gestation per year and are removed from the herd at a younger age than the ideal. In addition, it is industry practice to limit feed sows to ensure that they remain at an ideal condition score. It is known that, during gestation, each sow should receive a different amount of food according to its body condition. Underweight animals have nutritional deficiency and lower number of piglets per litter. On the other hand, overweight sows have an abnormal development of mammary glands, reducing the amount of milk produced during lactation, causing economic losses. However, moving sows to group gestation makes it difficult to monitor condition score in gestating sows. Both the detection of lameness and the classification of body condition are currently assessed using subjective methods, which is time consuming and difficult to accurately complete. Therefore, the early recognition of animals that present physical condition outside the standards is important to prevent production losses caused by both the aggravation of the conditions presented and the impact on the animals\' welfare. The objective of this project is to obtain three characteristics (body condition score, mass and backfat thickness) through depth images, that proved to be effective on the acquisition of these features in other animals (boars and cows). The second objective is to develop a method for early detection of lameness using the kinematic approach, that has been generating good results and which difficulties have the potential to be reduced by using depth images instead of the method of reflective markers currently used. To predict body condition, a multiple linear regression was obtained using the minor axis of the ellipse fitted around sow\'s body, the width at shoulders, and the angle, of the last rib\'s curvature. To predict backfat, a multiple linear regression was performed using the height of last rib\'s curvature, the perimeter of sow\'s body, the major axis of the ellipse fitted around sow\'s body, the length from snout to rump, and the predicted body condition score. It was possible to obtain the body mass with a simple linear regression using the projected volume of the sows\' body. For lameness detection, three models presented the best accuracy (76.9%): linear discriminant analysis, fine 1-nearest neighbor, and weighted 10-nearest neighbors. The input variables used on the models were obtained from depth videos (number, time, and length of steps for each of the four regions analyzed - left and right shoulders and left and right hips; total walk time; and number of local maxima for head region). As a result of these studies, it has been demonstrated that a depth camera can be used to automate the weight, condition score, backfat thickness, and lameness acquisition/detection in gestating and lactating sows.
publishDate 2019
dc.date.none.fl_str_mv 2019-06-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11152/tde-29082019-154917/
url http://www.teses.usp.br/teses/disponiveis/11/11152/tde-29082019-154917/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258576285859840