Monitoring fluidized bed dryers containing inert ABS particles using passive acoustic emissions and artificial neural networks
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/74/74133/tde-26092024-150951/ |
Resumo: | This study aimed to monitor fluidized bed dryers with inert ABS plastic particles by applying the analysis of passive acoustic emissions recorded by a piezoelectric microphone, installed externally to the fluidized bed vessel. Audio features such as waveform, DFT and MFCC confirmed the existence of acoustic changes corresponding to variations in the agitation intensity of the inert particles. The MFCC coefficients were used as input neurons in a three-layer artificial neural network (ANN), developed to predict the dynamics of fluidization based on three case studies: air velocity of the fluidizing gas, liquid flow rate added, and drying time. The training and validation stages of the ANN converged after 15 epochs, through the minimization of the Loss function. The MFCC coefficients served as a robust basis for modeling by the neural network, displaying high predictive capacity with R² values above 0.8 in all case studies. This study highlighted that the application of passive acoustic signals and neural networks allows for real-time data acquisition of fluidized bed dryers with inert particles, being useful in monitoring the efficiency of the process and the quality of the product. |
| id |
USP_cc12c79eb86ba57623b2be2cf7a74538 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-26092024-150951 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Monitoring fluidized bed dryers containing inert ABS particles using passive acoustic emissions and artificial neural networksMonitoramento de secadores de leito fluidizado contendo partículas inertes de ABS utilizando emissões acústicas passivas e redes neurais artificiaisAcoustic sensorCoeficientes cepstrais de frequência melFluid bed dryingFourier transformMel frequency cepstral coefficientsMulti-layer perceptronPerceptron multicamadasSecadores leito fluidizadoSensor acústicoTransformada de FourierThis study aimed to monitor fluidized bed dryers with inert ABS plastic particles by applying the analysis of passive acoustic emissions recorded by a piezoelectric microphone, installed externally to the fluidized bed vessel. Audio features such as waveform, DFT and MFCC confirmed the existence of acoustic changes corresponding to variations in the agitation intensity of the inert particles. The MFCC coefficients were used as input neurons in a three-layer artificial neural network (ANN), developed to predict the dynamics of fluidization based on three case studies: air velocity of the fluidizing gas, liquid flow rate added, and drying time. The training and validation stages of the ANN converged after 15 epochs, through the minimization of the Loss function. The MFCC coefficients served as a robust basis for modeling by the neural network, displaying high predictive capacity with R² values above 0.8 in all case studies. This study highlighted that the application of passive acoustic signals and neural networks allows for real-time data acquisition of fluidized bed dryers with inert particles, being useful in monitoring the efficiency of the process and the quality of the product.Este estudo teve como objetivo monitorar secadores de leito fluidizado com partículas inertes de plástico ABS, aplicando a análise de emissões acústicas passivas gravadas por um microfone piezoelétrico, instalado externamente ao vaso do leito fluidizado. Recursos de áudio como waveform, DFT e MFCC demonstraram a existência de alterações acústicas correspondentes a variações na intensidade de agitação das partículas inertes. Os coeficientes MFCC foram utilizados como neurônios de entrada em uma rede neural artificial (ANN) de três camadas, desenvolvida para prever a dinâmica da fluidização com base em três estudos de caso: velocidade do ar fluidizante, vazão do líquido adicionado e tempo de secagem. As etapas de treinamento e validação da ANN convergiram após 15 epochs, através da minimização da função de perda (Loss). Os coeficientes MFCC serviram como uma base robusta para a modelagem pela rede neural, exibindo alta capacidade preditiva com valores de R² superiores a 0.8 em todos os estudos de caso. Este estudo destacou que a aplicação de sinais acústicos passivos e redes neurais possibilita a aquisição de dados em tempo real de secadores de leito fluidizado com partículas inertes, sendo útil no monitoramento da eficiência do processo e na qualidade do produto.Biblioteca Digitais de Teses e Dissertações da USPDacanal, Gustavo CesarMetzner, Willian Velloso2024-05-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/74/74133/tde-26092024-150951/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-09-26T19:42:02Zoai:teses.usp.br:tde-26092024-150951Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-09-26T19:42:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Monitoring fluidized bed dryers containing inert ABS particles using passive acoustic emissions and artificial neural networks Monitoramento de secadores de leito fluidizado contendo partículas inertes de ABS utilizando emissões acústicas passivas e redes neurais artificiais |
| title |
Monitoring fluidized bed dryers containing inert ABS particles using passive acoustic emissions and artificial neural networks |
| spellingShingle |
Monitoring fluidized bed dryers containing inert ABS particles using passive acoustic emissions and artificial neural networks Metzner, Willian Velloso Acoustic sensor Coeficientes cepstrais de frequência mel Fluid bed drying Fourier transform Mel frequency cepstral coefficients Multi-layer perceptron Perceptron multicamadas Secadores leito fluidizado Sensor acústico Transformada de Fourier |
| title_short |
Monitoring fluidized bed dryers containing inert ABS particles using passive acoustic emissions and artificial neural networks |
| title_full |
Monitoring fluidized bed dryers containing inert ABS particles using passive acoustic emissions and artificial neural networks |
| title_fullStr |
Monitoring fluidized bed dryers containing inert ABS particles using passive acoustic emissions and artificial neural networks |
| title_full_unstemmed |
Monitoring fluidized bed dryers containing inert ABS particles using passive acoustic emissions and artificial neural networks |
| title_sort |
Monitoring fluidized bed dryers containing inert ABS particles using passive acoustic emissions and artificial neural networks |
| author |
Metzner, Willian Velloso |
| author_facet |
Metzner, Willian Velloso |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Dacanal, Gustavo Cesar |
| dc.contributor.author.fl_str_mv |
Metzner, Willian Velloso |
| dc.subject.por.fl_str_mv |
Acoustic sensor Coeficientes cepstrais de frequência mel Fluid bed drying Fourier transform Mel frequency cepstral coefficients Multi-layer perceptron Perceptron multicamadas Secadores leito fluidizado Sensor acústico Transformada de Fourier |
| topic |
Acoustic sensor Coeficientes cepstrais de frequência mel Fluid bed drying Fourier transform Mel frequency cepstral coefficients Multi-layer perceptron Perceptron multicamadas Secadores leito fluidizado Sensor acústico Transformada de Fourier |
| description |
This study aimed to monitor fluidized bed dryers with inert ABS plastic particles by applying the analysis of passive acoustic emissions recorded by a piezoelectric microphone, installed externally to the fluidized bed vessel. Audio features such as waveform, DFT and MFCC confirmed the existence of acoustic changes corresponding to variations in the agitation intensity of the inert particles. The MFCC coefficients were used as input neurons in a three-layer artificial neural network (ANN), developed to predict the dynamics of fluidization based on three case studies: air velocity of the fluidizing gas, liquid flow rate added, and drying time. The training and validation stages of the ANN converged after 15 epochs, through the minimization of the Loss function. The MFCC coefficients served as a robust basis for modeling by the neural network, displaying high predictive capacity with R² values above 0.8 in all case studies. This study highlighted that the application of passive acoustic signals and neural networks allows for real-time data acquisition of fluidized bed dryers with inert particles, being useful in monitoring the efficiency of the process and the quality of the product. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-05-06 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/74/74133/tde-26092024-150951/ |
| url |
https://www.teses.usp.br/teses/disponiveis/74/74133/tde-26092024-150951/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1818279236391141376 |