Modelos lineares mistos assimétricos

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Davila, Victor Hugo Lachos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-141613/
Resumo: Modelos lineares mistos tem sido frequentemente usados na análise de dados onde as respostas são agrupadas, pelo fato de serem flexíveis para modelar a correlação entre e intra-indivíduos (ou grupos). A normalidade (simetria) dos efeitos e erros aleatórios é uma suposição rotineira em modelos lineares mistos, que pode ser não realista e obscurecer importantes características da variação entre e intra-indivíduos (ou grupos). Neste trabalho relaxamos a suposição de normalidade considerando que tanto os erros como os efeitos aleatórios seguem uma distribuição normal-assimétrica, que inclui a distribuição normal como caso especial e fornece flexibilidade em capturar uma ampla variedade de comportamentos não normais, por simplesmente adicionar um parâmetro que controla o grau de assimetria. A densidade marginal das quantidades observadas é encontrada e mostramos que tem forma fechada, de modo que inferências podem ser abordadas usando programas computacionais conhecidos (R, S-plus, Matlab) e técnicas de otimização padrão. Explorando propriedades estatísticas do modelo considerado implementando o algoritmo EM que fornece algumas vantagens sobre a maximização direta da função log-verossimilhança. Apresentamos também, para esta distribuição normal-assimétrica multivariada, vários resultados relacionados com a teoria da distribuição das formas quadráticas, transformações lineares, densidade marginal e condicionamento. Em um segundo estágio do trabalho, usando uma segunda versão de distribuiçào normal-assimétrica multivariada, os modelos lineares mistos normal assimétricos bayesianos são definidos e procedimentos relacionados com o método Monte Carlo via cadeias de Markov (MCMC) são apresentados fazendo da inferência bayesiana uma alternativa viável para tais modelos. Em ambos os casos, resultados de estudo de simulação e aplicações a conjuntos de dados reais são fornecidos mostrando que os critérios de informação padrão, tais como AIC, BIC e HQ podem ser usados para detectar afastamentos da normalidade (simetria). Finalmente, apresentamos métodos para estimação em modelos lineares mistos com erros nas variáveis, baseados na função escore corrigido de Nakamura (1990), simulação-extrapolação (SIMEX) de Stefanski e Cook (1995) e máxima verossimilhança. Um estudo de simulação comparando os métodos SIMEX e escore corrigido é apresentado.
id USP_ce37626fe5c5f0acb65b9c3447a7c934
oai_identifier_str oai:teses.usp.br:tde-20210729-141613
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Modelos lineares mistos assimétricosnot availablePesquisa E Planejamento EstatísticoModelos lineares mistos tem sido frequentemente usados na análise de dados onde as respostas são agrupadas, pelo fato de serem flexíveis para modelar a correlação entre e intra-indivíduos (ou grupos). A normalidade (simetria) dos efeitos e erros aleatórios é uma suposição rotineira em modelos lineares mistos, que pode ser não realista e obscurecer importantes características da variação entre e intra-indivíduos (ou grupos). Neste trabalho relaxamos a suposição de normalidade considerando que tanto os erros como os efeitos aleatórios seguem uma distribuição normal-assimétrica, que inclui a distribuição normal como caso especial e fornece flexibilidade em capturar uma ampla variedade de comportamentos não normais, por simplesmente adicionar um parâmetro que controla o grau de assimetria. A densidade marginal das quantidades observadas é encontrada e mostramos que tem forma fechada, de modo que inferências podem ser abordadas usando programas computacionais conhecidos (R, S-plus, Matlab) e técnicas de otimização padrão. Explorando propriedades estatísticas do modelo considerado implementando o algoritmo EM que fornece algumas vantagens sobre a maximização direta da função log-verossimilhança. Apresentamos também, para esta distribuição normal-assimétrica multivariada, vários resultados relacionados com a teoria da distribuição das formas quadráticas, transformações lineares, densidade marginal e condicionamento. Em um segundo estágio do trabalho, usando uma segunda versão de distribuiçào normal-assimétrica multivariada, os modelos lineares mistos normal assimétricos bayesianos são definidos e procedimentos relacionados com o método Monte Carlo via cadeias de Markov (MCMC) são apresentados fazendo da inferência bayesiana uma alternativa viável para tais modelos. Em ambos os casos, resultados de estudo de simulação e aplicações a conjuntos de dados reais são fornecidos mostrando que os critérios de informação padrão, tais como AIC, BIC e HQ podem ser usados para detectar afastamentos da normalidade (simetria). Finalmente, apresentamos métodos para estimação em modelos lineares mistos com erros nas variáveis, baseados na função escore corrigido de Nakamura (1990), simulação-extrapolação (SIMEX) de Stefanski e Cook (1995) e máxima verossimilhança. Um estudo de simulação comparando os métodos SIMEX e escore corrigido é apresentado.not availableBiblioteca Digitais de Teses e Dissertações da USPBolfarine, HelenoDavila, Victor Hugo Lachos2004-10-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-141613/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T13:16:02Zoai:teses.usp.br:tde-20210729-141613Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T13:16:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelos lineares mistos assimétricos
not available
title Modelos lineares mistos assimétricos
spellingShingle Modelos lineares mistos assimétricos
Davila, Victor Hugo Lachos
Pesquisa E Planejamento Estatístico
title_short Modelos lineares mistos assimétricos
title_full Modelos lineares mistos assimétricos
title_fullStr Modelos lineares mistos assimétricos
title_full_unstemmed Modelos lineares mistos assimétricos
title_sort Modelos lineares mistos assimétricos
author Davila, Victor Hugo Lachos
author_facet Davila, Victor Hugo Lachos
author_role author
dc.contributor.none.fl_str_mv Bolfarine, Heleno
dc.contributor.author.fl_str_mv Davila, Victor Hugo Lachos
dc.subject.por.fl_str_mv Pesquisa E Planejamento Estatístico
topic Pesquisa E Planejamento Estatístico
description Modelos lineares mistos tem sido frequentemente usados na análise de dados onde as respostas são agrupadas, pelo fato de serem flexíveis para modelar a correlação entre e intra-indivíduos (ou grupos). A normalidade (simetria) dos efeitos e erros aleatórios é uma suposição rotineira em modelos lineares mistos, que pode ser não realista e obscurecer importantes características da variação entre e intra-indivíduos (ou grupos). Neste trabalho relaxamos a suposição de normalidade considerando que tanto os erros como os efeitos aleatórios seguem uma distribuição normal-assimétrica, que inclui a distribuição normal como caso especial e fornece flexibilidade em capturar uma ampla variedade de comportamentos não normais, por simplesmente adicionar um parâmetro que controla o grau de assimetria. A densidade marginal das quantidades observadas é encontrada e mostramos que tem forma fechada, de modo que inferências podem ser abordadas usando programas computacionais conhecidos (R, S-plus, Matlab) e técnicas de otimização padrão. Explorando propriedades estatísticas do modelo considerado implementando o algoritmo EM que fornece algumas vantagens sobre a maximização direta da função log-verossimilhança. Apresentamos também, para esta distribuição normal-assimétrica multivariada, vários resultados relacionados com a teoria da distribuição das formas quadráticas, transformações lineares, densidade marginal e condicionamento. Em um segundo estágio do trabalho, usando uma segunda versão de distribuiçào normal-assimétrica multivariada, os modelos lineares mistos normal assimétricos bayesianos são definidos e procedimentos relacionados com o método Monte Carlo via cadeias de Markov (MCMC) são apresentados fazendo da inferência bayesiana uma alternativa viável para tais modelos. Em ambos os casos, resultados de estudo de simulação e aplicações a conjuntos de dados reais são fornecidos mostrando que os critérios de informação padrão, tais como AIC, BIC e HQ podem ser usados para detectar afastamentos da normalidade (simetria). Finalmente, apresentamos métodos para estimação em modelos lineares mistos com erros nas variáveis, baseados na função escore corrigido de Nakamura (1990), simulação-extrapolação (SIMEX) de Stefanski e Cook (1995) e máxima verossimilhança. Um estudo de simulação comparando os métodos SIMEX e escore corrigido é apresentado.
publishDate 2004
dc.date.none.fl_str_mv 2004-10-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-141613/
url https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-141613/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809091977131589632