Modelos lineares mistos assimétricos
Ano de defesa: | 2004 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-141613/ |
Resumo: | Modelos lineares mistos tem sido frequentemente usados na análise de dados onde as respostas são agrupadas, pelo fato de serem flexíveis para modelar a correlação entre e intra-indivíduos (ou grupos). A normalidade (simetria) dos efeitos e erros aleatórios é uma suposição rotineira em modelos lineares mistos, que pode ser não realista e obscurecer importantes características da variação entre e intra-indivíduos (ou grupos). Neste trabalho relaxamos a suposição de normalidade considerando que tanto os erros como os efeitos aleatórios seguem uma distribuição normal-assimétrica, que inclui a distribuição normal como caso especial e fornece flexibilidade em capturar uma ampla variedade de comportamentos não normais, por simplesmente adicionar um parâmetro que controla o grau de assimetria. A densidade marginal das quantidades observadas é encontrada e mostramos que tem forma fechada, de modo que inferências podem ser abordadas usando programas computacionais conhecidos (R, S-plus, Matlab) e técnicas de otimização padrão. Explorando propriedades estatísticas do modelo considerado implementando o algoritmo EM que fornece algumas vantagens sobre a maximização direta da função log-verossimilhança. Apresentamos também, para esta distribuição normal-assimétrica multivariada, vários resultados relacionados com a teoria da distribuição das formas quadráticas, transformações lineares, densidade marginal e condicionamento. Em um segundo estágio do trabalho, usando uma segunda versão de distribuiçào normal-assimétrica multivariada, os modelos lineares mistos normal assimétricos bayesianos são definidos e procedimentos relacionados com o método Monte Carlo via cadeias de Markov (MCMC) são apresentados fazendo da inferência bayesiana uma alternativa viável para tais modelos. Em ambos os casos, resultados de estudo de simulação e aplicações a conjuntos de dados reais são fornecidos mostrando que os critérios de informação padrão, tais como AIC, BIC e HQ podem ser usados para detectar afastamentos da normalidade (simetria). Finalmente, apresentamos métodos para estimação em modelos lineares mistos com erros nas variáveis, baseados na função escore corrigido de Nakamura (1990), simulação-extrapolação (SIMEX) de Stefanski e Cook (1995) e máxima verossimilhança. Um estudo de simulação comparando os métodos SIMEX e escore corrigido é apresentado. |
id |
USP_ce37626fe5c5f0acb65b9c3447a7c934 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-141613 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
|
spelling |
Modelos lineares mistos assimétricosnot availablePesquisa E Planejamento EstatísticoModelos lineares mistos tem sido frequentemente usados na análise de dados onde as respostas são agrupadas, pelo fato de serem flexíveis para modelar a correlação entre e intra-indivíduos (ou grupos). A normalidade (simetria) dos efeitos e erros aleatórios é uma suposição rotineira em modelos lineares mistos, que pode ser não realista e obscurecer importantes características da variação entre e intra-indivíduos (ou grupos). Neste trabalho relaxamos a suposição de normalidade considerando que tanto os erros como os efeitos aleatórios seguem uma distribuição normal-assimétrica, que inclui a distribuição normal como caso especial e fornece flexibilidade em capturar uma ampla variedade de comportamentos não normais, por simplesmente adicionar um parâmetro que controla o grau de assimetria. A densidade marginal das quantidades observadas é encontrada e mostramos que tem forma fechada, de modo que inferências podem ser abordadas usando programas computacionais conhecidos (R, S-plus, Matlab) e técnicas de otimização padrão. Explorando propriedades estatísticas do modelo considerado implementando o algoritmo EM que fornece algumas vantagens sobre a maximização direta da função log-verossimilhança. Apresentamos também, para esta distribuição normal-assimétrica multivariada, vários resultados relacionados com a teoria da distribuição das formas quadráticas, transformações lineares, densidade marginal e condicionamento. Em um segundo estágio do trabalho, usando uma segunda versão de distribuiçào normal-assimétrica multivariada, os modelos lineares mistos normal assimétricos bayesianos são definidos e procedimentos relacionados com o método Monte Carlo via cadeias de Markov (MCMC) são apresentados fazendo da inferência bayesiana uma alternativa viável para tais modelos. Em ambos os casos, resultados de estudo de simulação e aplicações a conjuntos de dados reais são fornecidos mostrando que os critérios de informação padrão, tais como AIC, BIC e HQ podem ser usados para detectar afastamentos da normalidade (simetria). Finalmente, apresentamos métodos para estimação em modelos lineares mistos com erros nas variáveis, baseados na função escore corrigido de Nakamura (1990), simulação-extrapolação (SIMEX) de Stefanski e Cook (1995) e máxima verossimilhança. Um estudo de simulação comparando os métodos SIMEX e escore corrigido é apresentado.not availableBiblioteca Digitais de Teses e Dissertações da USPBolfarine, HelenoDavila, Victor Hugo Lachos2004-10-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-141613/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T13:16:02Zoai:teses.usp.br:tde-20210729-141613Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T13:16:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelos lineares mistos assimétricos not available |
title |
Modelos lineares mistos assimétricos |
spellingShingle |
Modelos lineares mistos assimétricos Davila, Victor Hugo Lachos Pesquisa E Planejamento Estatístico |
title_short |
Modelos lineares mistos assimétricos |
title_full |
Modelos lineares mistos assimétricos |
title_fullStr |
Modelos lineares mistos assimétricos |
title_full_unstemmed |
Modelos lineares mistos assimétricos |
title_sort |
Modelos lineares mistos assimétricos |
author |
Davila, Victor Hugo Lachos |
author_facet |
Davila, Victor Hugo Lachos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bolfarine, Heleno |
dc.contributor.author.fl_str_mv |
Davila, Victor Hugo Lachos |
dc.subject.por.fl_str_mv |
Pesquisa E Planejamento Estatístico |
topic |
Pesquisa E Planejamento Estatístico |
description |
Modelos lineares mistos tem sido frequentemente usados na análise de dados onde as respostas são agrupadas, pelo fato de serem flexíveis para modelar a correlação entre e intra-indivíduos (ou grupos). A normalidade (simetria) dos efeitos e erros aleatórios é uma suposição rotineira em modelos lineares mistos, que pode ser não realista e obscurecer importantes características da variação entre e intra-indivíduos (ou grupos). Neste trabalho relaxamos a suposição de normalidade considerando que tanto os erros como os efeitos aleatórios seguem uma distribuição normal-assimétrica, que inclui a distribuição normal como caso especial e fornece flexibilidade em capturar uma ampla variedade de comportamentos não normais, por simplesmente adicionar um parâmetro que controla o grau de assimetria. A densidade marginal das quantidades observadas é encontrada e mostramos que tem forma fechada, de modo que inferências podem ser abordadas usando programas computacionais conhecidos (R, S-plus, Matlab) e técnicas de otimização padrão. Explorando propriedades estatísticas do modelo considerado implementando o algoritmo EM que fornece algumas vantagens sobre a maximização direta da função log-verossimilhança. Apresentamos também, para esta distribuição normal-assimétrica multivariada, vários resultados relacionados com a teoria da distribuição das formas quadráticas, transformações lineares, densidade marginal e condicionamento. Em um segundo estágio do trabalho, usando uma segunda versão de distribuiçào normal-assimétrica multivariada, os modelos lineares mistos normal assimétricos bayesianos são definidos e procedimentos relacionados com o método Monte Carlo via cadeias de Markov (MCMC) são apresentados fazendo da inferência bayesiana uma alternativa viável para tais modelos. Em ambos os casos, resultados de estudo de simulação e aplicações a conjuntos de dados reais são fornecidos mostrando que os critérios de informação padrão, tais como AIC, BIC e HQ podem ser usados para detectar afastamentos da normalidade (simetria). Finalmente, apresentamos métodos para estimação em modelos lineares mistos com erros nas variáveis, baseados na função escore corrigido de Nakamura (1990), simulação-extrapolação (SIMEX) de Stefanski e Cook (1995) e máxima verossimilhança. Um estudo de simulação comparando os métodos SIMEX e escore corrigido é apresentado. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-10-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-141613/ |
url |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-141613/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1809091977131589632 |