A bag of features approach for human attribute analysis on face images
| Ano de defesa: | 2019 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/45/45134/tde-07102019-213618/ |
Resumo: | Computer Vision researchers are constantly challenged with questions that are motivated by real applications. One of these questions is whether a computer program could distinguish groups of people based on their geographical ancestry, using only frontal images of their faces. The advances in this research area in the last ten years show that the answer to that question is affirmative. Several papers address this problem by applying methods such as Local Binary Patterns (LBP), raw pixel values, Principal or Independent Component Analysis (PCA/ICA), Gabor filters, Biologically Inspired Features (BIF), and more recently, Convolution Neural Networks (CNN). In this work we propose to combine the Bag-of-Visual-Words model with new dictionary learning techniques and a new spatial structure approach for image features. An extensive set of experiments has been performed using two of the largest face image databases available (MORPH-II and FERET), reaching very competitive results for gender and ethnicity recognition, while using a considerable small set of images for training. |
| id |
USP_ce9e42f62182680305deed5f9ced1735 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-07102019-213618 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
A bag of features approach for human attribute analysis on face imagesUma abordagem \"bag of features\" para análise de atributos humanos em imagens de facesAprendizagem por dicionárioBag-of-visual-words modelClassificação de gênero e etniaDictionary learningFace image processingGender and ethnicity classificationModelo bag-of-words visualProcessamento de imagens de facesComputer Vision researchers are constantly challenged with questions that are motivated by real applications. One of these questions is whether a computer program could distinguish groups of people based on their geographical ancestry, using only frontal images of their faces. The advances in this research area in the last ten years show that the answer to that question is affirmative. Several papers address this problem by applying methods such as Local Binary Patterns (LBP), raw pixel values, Principal or Independent Component Analysis (PCA/ICA), Gabor filters, Biologically Inspired Features (BIF), and more recently, Convolution Neural Networks (CNN). In this work we propose to combine the Bag-of-Visual-Words model with new dictionary learning techniques and a new spatial structure approach for image features. An extensive set of experiments has been performed using two of the largest face image databases available (MORPH-II and FERET), reaching very competitive results for gender and ethnicity recognition, while using a considerable small set of images for training.Pesquisadores de visão computacional são constantemente desafiados com perguntas motivadas por aplicações reais. Uma dessas questões é se um programa de computador poderia distinguir grupos de pessoas com base em sua ascendência geográfica, usando apenas imagens frontais de seus rostos. Os avanços nesta área de pesquisa nos últimos dez anos mostram que a resposta a essa pergunta é afirmativa. Vários artigos abordam esse problema aplicando métodos como Padrões Binários Locais (LBP), valores de pixels brutos, Análise de Componentes Principais ou Independentes (PCA/ICA), filtros de Gabor, Características Biologicamente Inspiradas (BIF) e, mais recentemente, Redes Neurais Convolucionais (CNN). Neste trabalho propomos combinar o modelo \"bag-of-words\" visual com novas técnicas de aprendizagem por dicionário e uma nova abordagem de estrutura espacial para características da imagem. Um extenso conjunto de experimentos foi realizado usando dois dos maiores bancos de dados de imagens faciais disponíveis (MORPH-II e FERET), alcançando resultados muito competitivos para reconhecimento de gênero e etnia, ao passo que utiliza um conjunto consideravelmente pequeno de imagens para treinamento.Biblioteca Digitais de Teses e Dissertações da USPHirata Junior, RobertoAraujo, Rafael Will Macêdo de2019-09-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-07102019-213618/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-11-08T20:39:21Zoai:teses.usp.br:tde-07102019-213618Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-08T20:39:21Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
A bag of features approach for human attribute analysis on face images Uma abordagem \"bag of features\" para análise de atributos humanos em imagens de faces |
| title |
A bag of features approach for human attribute analysis on face images |
| spellingShingle |
A bag of features approach for human attribute analysis on face images Araujo, Rafael Will Macêdo de Aprendizagem por dicionário Bag-of-visual-words model Classificação de gênero e etnia Dictionary learning Face image processing Gender and ethnicity classification Modelo bag-of-words visual Processamento de imagens de faces |
| title_short |
A bag of features approach for human attribute analysis on face images |
| title_full |
A bag of features approach for human attribute analysis on face images |
| title_fullStr |
A bag of features approach for human attribute analysis on face images |
| title_full_unstemmed |
A bag of features approach for human attribute analysis on face images |
| title_sort |
A bag of features approach for human attribute analysis on face images |
| author |
Araujo, Rafael Will Macêdo de |
| author_facet |
Araujo, Rafael Will Macêdo de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Hirata Junior, Roberto |
| dc.contributor.author.fl_str_mv |
Araujo, Rafael Will Macêdo de |
| dc.subject.por.fl_str_mv |
Aprendizagem por dicionário Bag-of-visual-words model Classificação de gênero e etnia Dictionary learning Face image processing Gender and ethnicity classification Modelo bag-of-words visual Processamento de imagens de faces |
| topic |
Aprendizagem por dicionário Bag-of-visual-words model Classificação de gênero e etnia Dictionary learning Face image processing Gender and ethnicity classification Modelo bag-of-words visual Processamento de imagens de faces |
| description |
Computer Vision researchers are constantly challenged with questions that are motivated by real applications. One of these questions is whether a computer program could distinguish groups of people based on their geographical ancestry, using only frontal images of their faces. The advances in this research area in the last ten years show that the answer to that question is affirmative. Several papers address this problem by applying methods such as Local Binary Patterns (LBP), raw pixel values, Principal or Independent Component Analysis (PCA/ICA), Gabor filters, Biologically Inspired Features (BIF), and more recently, Convolution Neural Networks (CNN). In this work we propose to combine the Bag-of-Visual-Words model with new dictionary learning techniques and a new spatial structure approach for image features. An extensive set of experiments has been performed using two of the largest face image databases available (MORPH-II and FERET), reaching very competitive results for gender and ethnicity recognition, while using a considerable small set of images for training. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-09-06 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-07102019-213618/ |
| url |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-07102019-213618/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257945070370816 |