Detecção de anomalias em prescrições médicas com aprendizagem federada e gerenciamento de armazenamento em blockchain
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-19122023-122357/ |
Resumo: | Com os avanços nas capacidades de processamento e armazenamento de dados em sistemas de registros médicos eletrônicos, evidencia-se a relevância da discussão sobre a existência de um ponto de falha único nos sistemas tradicionais, nos quais todo o tratamento dos dados é feito por uma autoridade central suscetível a falhas e ataques. Os dados de registros médicos, como prescrição de medicamentos, são considerados sensíveis pois tratam de informações pessoais e por isso devem estar seguros e serem privados contra acessos indevidos. No caso de prescrições, podem ocorrer problemas como fraudes e anomalias, tais como dosagens e frequências incorretas ou maliciosas. Entre essas últimas, cita-se as feitas para adquirir medicamentos de mais difícil obtenção para revenda e a compra de medicamentos controlados sem a devida permissão de um médico autorizado para fins de uso abusivo. Algumas soluções presentes na literatura para os problemas apresentados se utilizam de redes descentralizadas para solucionar o problema do ponto único de falha. Outras se utilizam de algoritmos de aprendizado de máquina para a análise de fraudes incluindo a aprendizagem federada, que separa o treinamento do modelo entre os clientes tornando assim o processo descentralizado. Todavia, faz-se necessária a elaboração de um modelo que seja eficaz contra os dois grupos de problemas citados voltado à área de prescrições médicas e que seja eficiente, eficaz, que possa preservar a privacidade dos dados e que seja independente das tecnologias utilizadas e adaptável. Sendo assim, o presente trabalho propõe uma arquitetura de rede blockchain associada a uma rede de aprendizagem federada para o processamento de registros de prescrições médicas, utilizando regressão logística para detecção de anomalias na quantidade e na frequência da prescrição de medicamentos. Os experimentos relacionados à rede foram realizados em redes Ethereum locais criadas na ferramenta Hyperledger Besu integradas a redes de aprendizagem federada criadas com a ferramenta Flower. Os resultados obtidos nos experimentos provaram que a arquitetura foi capaz de ser escalável e os seus aspectos qualitativos justificam o aumento do tempo entre as rodadas da aprendizagem federada quando integrada à rede blockchain. A solução apresentada é independente de tecnologia, adaptável em relação ao âmbito e também à sua implementação e foi capaz de cumprir com seus propósitos, obtendo uma acurácia de 98,37% na detecção de anomalias e um tempo médio de aproximadamente 10s em cada rodada da aprendizagem em uma rede com 5 nós e aproximadamente 15s para 11 nós, o que demonstrou um aumento menos que linear do tempo. |
| id |
USP_d5d7a73cf37ab1324eae92eb96cac107 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-19122023-122357 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Detecção de anomalias em prescrições médicas com aprendizagem federada e gerenciamento de armazenamento em blockchainAnomaly detection in medical prescriptions with federated learning and model management in blockchainAprendizado de máquinaBlockchainBlockchainDetecção de fraudeFederated learningFederated learningFraud detectionHealthcare systemMachine learningSistema de saúdeCom os avanços nas capacidades de processamento e armazenamento de dados em sistemas de registros médicos eletrônicos, evidencia-se a relevância da discussão sobre a existência de um ponto de falha único nos sistemas tradicionais, nos quais todo o tratamento dos dados é feito por uma autoridade central suscetível a falhas e ataques. Os dados de registros médicos, como prescrição de medicamentos, são considerados sensíveis pois tratam de informações pessoais e por isso devem estar seguros e serem privados contra acessos indevidos. No caso de prescrições, podem ocorrer problemas como fraudes e anomalias, tais como dosagens e frequências incorretas ou maliciosas. Entre essas últimas, cita-se as feitas para adquirir medicamentos de mais difícil obtenção para revenda e a compra de medicamentos controlados sem a devida permissão de um médico autorizado para fins de uso abusivo. Algumas soluções presentes na literatura para os problemas apresentados se utilizam de redes descentralizadas para solucionar o problema do ponto único de falha. Outras se utilizam de algoritmos de aprendizado de máquina para a análise de fraudes incluindo a aprendizagem federada, que separa o treinamento do modelo entre os clientes tornando assim o processo descentralizado. Todavia, faz-se necessária a elaboração de um modelo que seja eficaz contra os dois grupos de problemas citados voltado à área de prescrições médicas e que seja eficiente, eficaz, que possa preservar a privacidade dos dados e que seja independente das tecnologias utilizadas e adaptável. Sendo assim, o presente trabalho propõe uma arquitetura de rede blockchain associada a uma rede de aprendizagem federada para o processamento de registros de prescrições médicas, utilizando regressão logística para detecção de anomalias na quantidade e na frequência da prescrição de medicamentos. Os experimentos relacionados à rede foram realizados em redes Ethereum locais criadas na ferramenta Hyperledger Besu integradas a redes de aprendizagem federada criadas com a ferramenta Flower. Os resultados obtidos nos experimentos provaram que a arquitetura foi capaz de ser escalável e os seus aspectos qualitativos justificam o aumento do tempo entre as rodadas da aprendizagem federada quando integrada à rede blockchain. A solução apresentada é independente de tecnologia, adaptável em relação ao âmbito e também à sua implementação e foi capaz de cumprir com seus propósitos, obtendo uma acurácia de 98,37% na detecção de anomalias e um tempo médio de aproximadamente 10s em cada rodada da aprendizagem em uma rede com 5 nós e aproximadamente 15s para 11 nós, o que demonstrou um aumento menos que linear do tempo.With advancements in data processing and storage capabilities within electronic medical record systems, the relevance of discussing the existence of a single point of failure in traditional systems becomes evident. In these systems, all data processing is carried out by a central authority that is susceptible to failures and attacks. Medical record data, such as medication prescriptions, is considered sensitive due to its personal nature, necessitating security and privacy measures against unauthorized access. In the case of prescriptions, issues like fraud and anomalies can arise, including incorrect or malicious dosages and frequencies. Among the latter, instances are noted where prescriptions are issued to acquire more difficultto- obtain medications for resale, and the purchase of controlled substances without proper authorization from a licensed physician for abusive purposes. Several solutions found in the literature utilize decentralized networks to address the single point of failure issue. Others employ machine learning algorithms for fraud analysis, including federated learning, which separates model training among clients, thereby decentralizing the process. Nevertheless, theres a need for an effective model that addresses both sets of issues specific to medical prescriptions. This model should be efficient, capable of preserving data privacy, and technology-agnostic. This study proposes a blockchain network architecture combined with a federated learning network for processing medical prescription records. It employs logistic regression for anomaly detection in medication prescription quantity and frequency. Experiments related to the network were conducted on local Ethereum networks created using the Hyperledger Besu tool, integrated with federated learning networks established using the Flower tool. The experimental results demonstrated the scalability of the architecture. Qualitative aspects supported the extension of time intervals between rounds of federated learning when integrated with the blockchain network. The presented solution is technology-independent, adaptable in scope and implementation, and effectively fulfilled its objectives. It achieved a 98.37% accuracy in anomaly detection and an average time of around 10 seconds per round of learning in a network with 5 nodes. For 11 nodes, the average time was approximately 15 seconds, demonstrating a less-than-linear increase in time.Biblioteca Digitais de Teses e Dissertações da USPUeyama, JoZutião, Gabriel Augusto2023-08-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-19122023-122357/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2023-12-19T14:30:03Zoai:teses.usp.br:tde-19122023-122357Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-12-19T14:30:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Detecção de anomalias em prescrições médicas com aprendizagem federada e gerenciamento de armazenamento em blockchain Anomaly detection in medical prescriptions with federated learning and model management in blockchain |
| title |
Detecção de anomalias em prescrições médicas com aprendizagem federada e gerenciamento de armazenamento em blockchain |
| spellingShingle |
Detecção de anomalias em prescrições médicas com aprendizagem federada e gerenciamento de armazenamento em blockchain Zutião, Gabriel Augusto Aprendizado de máquina Blockchain Blockchain Detecção de fraude Federated learning Federated learning Fraud detection Healthcare system Machine learning Sistema de saúde |
| title_short |
Detecção de anomalias em prescrições médicas com aprendizagem federada e gerenciamento de armazenamento em blockchain |
| title_full |
Detecção de anomalias em prescrições médicas com aprendizagem federada e gerenciamento de armazenamento em blockchain |
| title_fullStr |
Detecção de anomalias em prescrições médicas com aprendizagem federada e gerenciamento de armazenamento em blockchain |
| title_full_unstemmed |
Detecção de anomalias em prescrições médicas com aprendizagem federada e gerenciamento de armazenamento em blockchain |
| title_sort |
Detecção de anomalias em prescrições médicas com aprendizagem federada e gerenciamento de armazenamento em blockchain |
| author |
Zutião, Gabriel Augusto |
| author_facet |
Zutião, Gabriel Augusto |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Ueyama, Jo |
| dc.contributor.author.fl_str_mv |
Zutião, Gabriel Augusto |
| dc.subject.por.fl_str_mv |
Aprendizado de máquina Blockchain Blockchain Detecção de fraude Federated learning Federated learning Fraud detection Healthcare system Machine learning Sistema de saúde |
| topic |
Aprendizado de máquina Blockchain Blockchain Detecção de fraude Federated learning Federated learning Fraud detection Healthcare system Machine learning Sistema de saúde |
| description |
Com os avanços nas capacidades de processamento e armazenamento de dados em sistemas de registros médicos eletrônicos, evidencia-se a relevância da discussão sobre a existência de um ponto de falha único nos sistemas tradicionais, nos quais todo o tratamento dos dados é feito por uma autoridade central suscetível a falhas e ataques. Os dados de registros médicos, como prescrição de medicamentos, são considerados sensíveis pois tratam de informações pessoais e por isso devem estar seguros e serem privados contra acessos indevidos. No caso de prescrições, podem ocorrer problemas como fraudes e anomalias, tais como dosagens e frequências incorretas ou maliciosas. Entre essas últimas, cita-se as feitas para adquirir medicamentos de mais difícil obtenção para revenda e a compra de medicamentos controlados sem a devida permissão de um médico autorizado para fins de uso abusivo. Algumas soluções presentes na literatura para os problemas apresentados se utilizam de redes descentralizadas para solucionar o problema do ponto único de falha. Outras se utilizam de algoritmos de aprendizado de máquina para a análise de fraudes incluindo a aprendizagem federada, que separa o treinamento do modelo entre os clientes tornando assim o processo descentralizado. Todavia, faz-se necessária a elaboração de um modelo que seja eficaz contra os dois grupos de problemas citados voltado à área de prescrições médicas e que seja eficiente, eficaz, que possa preservar a privacidade dos dados e que seja independente das tecnologias utilizadas e adaptável. Sendo assim, o presente trabalho propõe uma arquitetura de rede blockchain associada a uma rede de aprendizagem federada para o processamento de registros de prescrições médicas, utilizando regressão logística para detecção de anomalias na quantidade e na frequência da prescrição de medicamentos. Os experimentos relacionados à rede foram realizados em redes Ethereum locais criadas na ferramenta Hyperledger Besu integradas a redes de aprendizagem federada criadas com a ferramenta Flower. Os resultados obtidos nos experimentos provaram que a arquitetura foi capaz de ser escalável e os seus aspectos qualitativos justificam o aumento do tempo entre as rodadas da aprendizagem federada quando integrada à rede blockchain. A solução apresentada é independente de tecnologia, adaptável em relação ao âmbito e também à sua implementação e foi capaz de cumprir com seus propósitos, obtendo uma acurácia de 98,37% na detecção de anomalias e um tempo médio de aproximadamente 10s em cada rodada da aprendizagem em uma rede com 5 nós e aproximadamente 15s para 11 nós, o que demonstrou um aumento menos que linear do tempo. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-08-18 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-19122023-122357/ |
| url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-19122023-122357/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258275261710336 |