Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/11/11139/tde-06022025-111538/ |
Resumo: | Mastitis is the primary disease that affects the mammary gland of cows in dairy herds, responsible for negative impacts on productivity and farm profitability. Its rapid detection is the main method of control and prevention. Therefore, there is a clear need for rapid diagnostic methods as essential tools for controlling this disease. This thesis was developed in four parts. The first part consists of a literature review focusing on the methods for the identification and diagnosis of mastitis, considering new technologies. The second part involves a bibliometric review seeking the main applications of artificial intelligence (AI) in the context of bovine mastitis, identifying the main AI tools for diagnosing and predicting mastitis. A total of 62 articles from the Scopus database, published between 2011 and 2021, were used, based on keyword searches with terms related to AI models. The results identified machine learning and mastitis as the most cited terms, with a significant increase between 2018 and 2021. The most cited model was artificial neural networks. It was concluded that the use of AI in bovine mastitis is related to mastitis detection as a vital tool for preventing this disease. Moving on to the third chapter, the study was developed to determine the incidence rate of clinical mastitis (CM) in dairy herds in Brazil and its association with risk factors. A total of 117,296 records from 2019 to 2023 of CM cases in dairy farms across the country were used, including data on date, location, CM severity, herd size, housing system, and pathogen diagnosis for calculating the clinical mastitis incidence rate (IRCM). The results showed that the average IRCM was 8.05 cases per month. The most isolated pathogens were Non-aureus Staphylococcus (NAS), Streptococcus agalactiae/dysgalactiae, Escherichia coli, Streptococcus uberis, and Staphylococcus aureus, and incidence rates were calculated for each pathogen. There was an association between IRCM by pathogen and the respective variables: region, housing system, climate, and herd size. Finally, the fourth chapter of the thesis was developed as a continuation of the IRCM analysis, but with a geospatial approach. The data from the third chapter were filtered to include only those with information on location, herd size, and microbiological results, resulting in 148,191 observations, which were then merged with a database containing geographic coordinates available from IBGE. The data were analyzed to identify the relationship between IRCM and the distribution of pathogens according to immediate geographic regions (IGR). The average IRCM was higher in regions located in the South and Southeast of the country, with clusters forming among regions within the same state. Clusters of the main pathogens were mostly found in the region of Minas Gerais. However, there are no studies indicating the specific occurrence of pathogens in this region, suggesting that possible local factors and movements between herds within the same region may influence these results. |
| id |
USP_d6234602bde4d7ffad67e1398378fcf7 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-06022025-111538 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distributionSituação da mastite clínica em fazendas leiteiras no Brasil: taxa de incidência e distribuição geoespacialAnálise geoespacialBacteriaBactériaClustersClustersCowsGeospatial analysisGlândula mamáriaMammary glandVacasMastitis is the primary disease that affects the mammary gland of cows in dairy herds, responsible for negative impacts on productivity and farm profitability. Its rapid detection is the main method of control and prevention. Therefore, there is a clear need for rapid diagnostic methods as essential tools for controlling this disease. This thesis was developed in four parts. The first part consists of a literature review focusing on the methods for the identification and diagnosis of mastitis, considering new technologies. The second part involves a bibliometric review seeking the main applications of artificial intelligence (AI) in the context of bovine mastitis, identifying the main AI tools for diagnosing and predicting mastitis. A total of 62 articles from the Scopus database, published between 2011 and 2021, were used, based on keyword searches with terms related to AI models. The results identified machine learning and mastitis as the most cited terms, with a significant increase between 2018 and 2021. The most cited model was artificial neural networks. It was concluded that the use of AI in bovine mastitis is related to mastitis detection as a vital tool for preventing this disease. Moving on to the third chapter, the study was developed to determine the incidence rate of clinical mastitis (CM) in dairy herds in Brazil and its association with risk factors. A total of 117,296 records from 2019 to 2023 of CM cases in dairy farms across the country were used, including data on date, location, CM severity, herd size, housing system, and pathogen diagnosis for calculating the clinical mastitis incidence rate (IRCM). The results showed that the average IRCM was 8.05 cases per month. The most isolated pathogens were Non-aureus Staphylococcus (NAS), Streptococcus agalactiae/dysgalactiae, Escherichia coli, Streptococcus uberis, and Staphylococcus aureus, and incidence rates were calculated for each pathogen. There was an association between IRCM by pathogen and the respective variables: region, housing system, climate, and herd size. Finally, the fourth chapter of the thesis was developed as a continuation of the IRCM analysis, but with a geospatial approach. The data from the third chapter were filtered to include only those with information on location, herd size, and microbiological results, resulting in 148,191 observations, which were then merged with a database containing geographic coordinates available from IBGE. The data were analyzed to identify the relationship between IRCM and the distribution of pathogens according to immediate geographic regions (IGR). The average IRCM was higher in regions located in the South and Southeast of the country, with clusters forming among regions within the same state. Clusters of the main pathogens were mostly found in the region of Minas Gerais. However, there are no studies indicating the specific occurrence of pathogens in this region, suggesting that possible local factors and movements between herds within the same region may influence these results.A mastite é a principal doença que afeta a glândula mamária de vacas em rebanhos leiteiros, responsável pelos impactos negativos na produtividade e rentabilidade da propriedade. Sua rápida detecção é a principal forma de controle e prevenção. Assim, é evidente a necessidade por métodos rápidos de diagnóstico como ferramentas essenciais para controle desta doença. Esta tese foi desenvolvida em quatro partes, sendo a primeira desenvolvida em uma revisão de literatura com abordagem para os métodos para identificação e diagnóstico de mastite, considerando as novas tecnologias. A segunda parte aborda uma revisão bibliométrica buscando as principais aplicações de inteligência artificial (AI) no contexto da mastite bovina, identificando as principais ferramentas de AI para diagnosticar e prever a mastite. Foram utilizados 62 artigos obtidos pela base de dados Scopus, entre 2011 e 2021, por meio da busca de palavras-chave com termos relacionados à modelos de AI. Os resultados apontaram os termos aprendizado de máquina e mastite como os mais citados, com um aumento significativo entre 2018 e 2021. O modelo mais citado foi redes neurais artificiais. Concluiu-se que o uso da AI na mastite bovina está relacionado à detecção da mastite como uma ferramenta vital para prevenir essa doença. Seguindo para o terceiro capítulo, o estudo foi desenvolvido para determinação da taxa de incidência de mastite clínica (CM) em rebanhos leiteiros do Brasil e associação com fatores de risco. Foram utilizados 117296 dados obtidos entre os anos de 2019 e 2023 de casos de CM em fazendas leiteiras do país, com dados de data, localização, grau de CM, tamanho de rebanho, sistema de alojamento e diagnóstico de patógeno. Para cálculo da taxa de incidência de CM (IRCM). Como resultados, a média de IRCM foi de 8.05 casos por mês. Os patógenos mais isolados foram Staphylococcus não-aureus (NAS), Streptococcus agalactiae/dysgalactiae, Escherichia coli, Streptococcus uberis e Staphylococcus aureus, e foram calculadas as taxas de incidência para cada patógeno. Houve relação entre IRCM por patógeno e as respectivas variáveis: região, sistema de alojamento, clima e tamanho de rebanho. Por fim, o quarto capítulo da tese foi desenvolvido como continuação da análise de IRCM, porém com abordagem geoespacial. Foram utilizados os dados do terceiro capítulo, filtrados somente dados com informações de localização, tamanho de rebanho e resultado microbiológico, resultando em 148191 observações., posteriormente unidas ao banco de dados com coordenadas geográficas disponível pelo IBGE. Os dados foram analisados para identificação da relação entre IRCM e distribuição de patógenos de acordo com regiões imediatas (IGR). A IRCM média foi mais alta em regiões localizadas no Sul e Sudeste do país, com formação de Clusters entre regiões dentro do mesmo estado. Clusters dos principais patógenos foram encontrados em sua maioria na região de Minas Gerais. No entanto, não há estudos indicando a ocorrência específica de patógenos nessa região, sugerindo que possíveis fatores locais e movimentações entre rebanhos da mesma região podem estar influenciar estes resultados.Biblioteca Digitais de Teses e Dissertações da USPSantos, Marcos Veiga dosMitsunaga, Thatiane Mendes2024-11-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11139/tde-06022025-111538/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-02-10T13:55:02Zoai:teses.usp.br:tde-06022025-111538Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-02-10T13:55:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution Situação da mastite clínica em fazendas leiteiras no Brasil: taxa de incidência e distribuição geoespacial |
| title |
Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution |
| spellingShingle |
Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution Mitsunaga, Thatiane Mendes Análise geoespacial Bacteria Bactéria Clusters Clusters Cows Geospatial analysis Glândula mamária Mammary gland Vacas |
| title_short |
Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution |
| title_full |
Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution |
| title_fullStr |
Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution |
| title_full_unstemmed |
Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution |
| title_sort |
Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution |
| author |
Mitsunaga, Thatiane Mendes |
| author_facet |
Mitsunaga, Thatiane Mendes |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Santos, Marcos Veiga dos |
| dc.contributor.author.fl_str_mv |
Mitsunaga, Thatiane Mendes |
| dc.subject.por.fl_str_mv |
Análise geoespacial Bacteria Bactéria Clusters Clusters Cows Geospatial analysis Glândula mamária Mammary gland Vacas |
| topic |
Análise geoespacial Bacteria Bactéria Clusters Clusters Cows Geospatial analysis Glândula mamária Mammary gland Vacas |
| description |
Mastitis is the primary disease that affects the mammary gland of cows in dairy herds, responsible for negative impacts on productivity and farm profitability. Its rapid detection is the main method of control and prevention. Therefore, there is a clear need for rapid diagnostic methods as essential tools for controlling this disease. This thesis was developed in four parts. The first part consists of a literature review focusing on the methods for the identification and diagnosis of mastitis, considering new technologies. The second part involves a bibliometric review seeking the main applications of artificial intelligence (AI) in the context of bovine mastitis, identifying the main AI tools for diagnosing and predicting mastitis. A total of 62 articles from the Scopus database, published between 2011 and 2021, were used, based on keyword searches with terms related to AI models. The results identified machine learning and mastitis as the most cited terms, with a significant increase between 2018 and 2021. The most cited model was artificial neural networks. It was concluded that the use of AI in bovine mastitis is related to mastitis detection as a vital tool for preventing this disease. Moving on to the third chapter, the study was developed to determine the incidence rate of clinical mastitis (CM) in dairy herds in Brazil and its association with risk factors. A total of 117,296 records from 2019 to 2023 of CM cases in dairy farms across the country were used, including data on date, location, CM severity, herd size, housing system, and pathogen diagnosis for calculating the clinical mastitis incidence rate (IRCM). The results showed that the average IRCM was 8.05 cases per month. The most isolated pathogens were Non-aureus Staphylococcus (NAS), Streptococcus agalactiae/dysgalactiae, Escherichia coli, Streptococcus uberis, and Staphylococcus aureus, and incidence rates were calculated for each pathogen. There was an association between IRCM by pathogen and the respective variables: region, housing system, climate, and herd size. Finally, the fourth chapter of the thesis was developed as a continuation of the IRCM analysis, but with a geospatial approach. The data from the third chapter were filtered to include only those with information on location, herd size, and microbiological results, resulting in 148,191 observations, which were then merged with a database containing geographic coordinates available from IBGE. The data were analyzed to identify the relationship between IRCM and the distribution of pathogens according to immediate geographic regions (IGR). The average IRCM was higher in regions located in the South and Southeast of the country, with clusters forming among regions within the same state. Clusters of the main pathogens were mostly found in the region of Minas Gerais. However, there are no studies indicating the specific occurrence of pathogens in this region, suggesting that possible local factors and movements between herds within the same region may influence these results. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-11-22 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11139/tde-06022025-111538/ |
| url |
https://www.teses.usp.br/teses/disponiveis/11/11139/tde-06022025-111538/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1839839140050370560 |