Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Mitsunaga, Thatiane Mendes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/11/11139/tde-06022025-111538/
Resumo: Mastitis is the primary disease that affects the mammary gland of cows in dairy herds, responsible for negative impacts on productivity and farm profitability. Its rapid detection is the main method of control and prevention. Therefore, there is a clear need for rapid diagnostic methods as essential tools for controlling this disease. This thesis was developed in four parts. The first part consists of a literature review focusing on the methods for the identification and diagnosis of mastitis, considering new technologies. The second part involves a bibliometric review seeking the main applications of artificial intelligence (AI) in the context of bovine mastitis, identifying the main AI tools for diagnosing and predicting mastitis. A total of 62 articles from the Scopus database, published between 2011 and 2021, were used, based on keyword searches with terms related to AI models. The results identified machine learning and mastitis as the most cited terms, with a significant increase between 2018 and 2021. The most cited model was artificial neural networks. It was concluded that the use of AI in bovine mastitis is related to mastitis detection as a vital tool for preventing this disease. Moving on to the third chapter, the study was developed to determine the incidence rate of clinical mastitis (CM) in dairy herds in Brazil and its association with risk factors. A total of 117,296 records from 2019 to 2023 of CM cases in dairy farms across the country were used, including data on date, location, CM severity, herd size, housing system, and pathogen diagnosis for calculating the clinical mastitis incidence rate (IRCM). The results showed that the average IRCM was 8.05 cases per month. The most isolated pathogens were Non-aureus Staphylococcus (NAS), Streptococcus agalactiae/dysgalactiae, Escherichia coli, Streptococcus uberis, and Staphylococcus aureus, and incidence rates were calculated for each pathogen. There was an association between IRCM by pathogen and the respective variables: region, housing system, climate, and herd size. Finally, the fourth chapter of the thesis was developed as a continuation of the IRCM analysis, but with a geospatial approach. The data from the third chapter were filtered to include only those with information on location, herd size, and microbiological results, resulting in 148,191 observations, which were then merged with a database containing geographic coordinates available from IBGE. The data were analyzed to identify the relationship between IRCM and the distribution of pathogens according to immediate geographic regions (IGR). The average IRCM was higher in regions located in the South and Southeast of the country, with clusters forming among regions within the same state. Clusters of the main pathogens were mostly found in the region of Minas Gerais. However, there are no studies indicating the specific occurrence of pathogens in this region, suggesting that possible local factors and movements between herds within the same region may influence these results.
id USP_d6234602bde4d7ffad67e1398378fcf7
oai_identifier_str oai:teses.usp.br:tde-06022025-111538
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distributionSituação da mastite clínica em fazendas leiteiras no Brasil: taxa de incidência e distribuição geoespacialAnálise geoespacialBacteriaBactériaClustersClustersCowsGeospatial analysisGlândula mamáriaMammary glandVacasMastitis is the primary disease that affects the mammary gland of cows in dairy herds, responsible for negative impacts on productivity and farm profitability. Its rapid detection is the main method of control and prevention. Therefore, there is a clear need for rapid diagnostic methods as essential tools for controlling this disease. This thesis was developed in four parts. The first part consists of a literature review focusing on the methods for the identification and diagnosis of mastitis, considering new technologies. The second part involves a bibliometric review seeking the main applications of artificial intelligence (AI) in the context of bovine mastitis, identifying the main AI tools for diagnosing and predicting mastitis. A total of 62 articles from the Scopus database, published between 2011 and 2021, were used, based on keyword searches with terms related to AI models. The results identified machine learning and mastitis as the most cited terms, with a significant increase between 2018 and 2021. The most cited model was artificial neural networks. It was concluded that the use of AI in bovine mastitis is related to mastitis detection as a vital tool for preventing this disease. Moving on to the third chapter, the study was developed to determine the incidence rate of clinical mastitis (CM) in dairy herds in Brazil and its association with risk factors. A total of 117,296 records from 2019 to 2023 of CM cases in dairy farms across the country were used, including data on date, location, CM severity, herd size, housing system, and pathogen diagnosis for calculating the clinical mastitis incidence rate (IRCM). The results showed that the average IRCM was 8.05 cases per month. The most isolated pathogens were Non-aureus Staphylococcus (NAS), Streptococcus agalactiae/dysgalactiae, Escherichia coli, Streptococcus uberis, and Staphylococcus aureus, and incidence rates were calculated for each pathogen. There was an association between IRCM by pathogen and the respective variables: region, housing system, climate, and herd size. Finally, the fourth chapter of the thesis was developed as a continuation of the IRCM analysis, but with a geospatial approach. The data from the third chapter were filtered to include only those with information on location, herd size, and microbiological results, resulting in 148,191 observations, which were then merged with a database containing geographic coordinates available from IBGE. The data were analyzed to identify the relationship between IRCM and the distribution of pathogens according to immediate geographic regions (IGR). The average IRCM was higher in regions located in the South and Southeast of the country, with clusters forming among regions within the same state. Clusters of the main pathogens were mostly found in the region of Minas Gerais. However, there are no studies indicating the specific occurrence of pathogens in this region, suggesting that possible local factors and movements between herds within the same region may influence these results.A mastite é a principal doença que afeta a glândula mamária de vacas em rebanhos leiteiros, responsável pelos impactos negativos na produtividade e rentabilidade da propriedade. Sua rápida detecção é a principal forma de controle e prevenção. Assim, é evidente a necessidade por métodos rápidos de diagnóstico como ferramentas essenciais para controle desta doença. Esta tese foi desenvolvida em quatro partes, sendo a primeira desenvolvida em uma revisão de literatura com abordagem para os métodos para identificação e diagnóstico de mastite, considerando as novas tecnologias. A segunda parte aborda uma revisão bibliométrica buscando as principais aplicações de inteligência artificial (AI) no contexto da mastite bovina, identificando as principais ferramentas de AI para diagnosticar e prever a mastite. Foram utilizados 62 artigos obtidos pela base de dados Scopus, entre 2011 e 2021, por meio da busca de palavras-chave com termos relacionados à modelos de AI. Os resultados apontaram os termos aprendizado de máquina e mastite como os mais citados, com um aumento significativo entre 2018 e 2021. O modelo mais citado foi redes neurais artificiais. Concluiu-se que o uso da AI na mastite bovina está relacionado à detecção da mastite como uma ferramenta vital para prevenir essa doença. Seguindo para o terceiro capítulo, o estudo foi desenvolvido para determinação da taxa de incidência de mastite clínica (CM) em rebanhos leiteiros do Brasil e associação com fatores de risco. Foram utilizados 117296 dados obtidos entre os anos de 2019 e 2023 de casos de CM em fazendas leiteiras do país, com dados de data, localização, grau de CM, tamanho de rebanho, sistema de alojamento e diagnóstico de patógeno. Para cálculo da taxa de incidência de CM (IRCM). Como resultados, a média de IRCM foi de 8.05 casos por mês. Os patógenos mais isolados foram Staphylococcus não-aureus (NAS), Streptococcus agalactiae/dysgalactiae, Escherichia coli, Streptococcus uberis e Staphylococcus aureus, e foram calculadas as taxas de incidência para cada patógeno. Houve relação entre IRCM por patógeno e as respectivas variáveis: região, sistema de alojamento, clima e tamanho de rebanho. Por fim, o quarto capítulo da tese foi desenvolvido como continuação da análise de IRCM, porém com abordagem geoespacial. Foram utilizados os dados do terceiro capítulo, filtrados somente dados com informações de localização, tamanho de rebanho e resultado microbiológico, resultando em 148191 observações., posteriormente unidas ao banco de dados com coordenadas geográficas disponível pelo IBGE. Os dados foram analisados para identificação da relação entre IRCM e distribuição de patógenos de acordo com regiões imediatas (IGR). A IRCM média foi mais alta em regiões localizadas no Sul e Sudeste do país, com formação de Clusters entre regiões dentro do mesmo estado. Clusters dos principais patógenos foram encontrados em sua maioria na região de Minas Gerais. No entanto, não há estudos indicando a ocorrência específica de patógenos nessa região, sugerindo que possíveis fatores locais e movimentações entre rebanhos da mesma região podem estar influenciar estes resultados.Biblioteca Digitais de Teses e Dissertações da USPSantos, Marcos Veiga dosMitsunaga, Thatiane Mendes2024-11-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11139/tde-06022025-111538/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-02-10T13:55:02Zoai:teses.usp.br:tde-06022025-111538Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-02-10T13:55:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution
Situação da mastite clínica em fazendas leiteiras no Brasil: taxa de incidência e distribuição geoespacial
title Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution
spellingShingle Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution
Mitsunaga, Thatiane Mendes
Análise geoespacial
Bacteria
Bactéria
Clusters
Clusters
Cows
Geospatial analysis
Glândula mamária
Mammary gland
Vacas
title_short Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution
title_full Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution
title_fullStr Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution
title_full_unstemmed Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution
title_sort Clinical mastitis situation in Brazilian dairy farms: incidence rate and geospatial distribution
author Mitsunaga, Thatiane Mendes
author_facet Mitsunaga, Thatiane Mendes
author_role author
dc.contributor.none.fl_str_mv Santos, Marcos Veiga dos
dc.contributor.author.fl_str_mv Mitsunaga, Thatiane Mendes
dc.subject.por.fl_str_mv Análise geoespacial
Bacteria
Bactéria
Clusters
Clusters
Cows
Geospatial analysis
Glândula mamária
Mammary gland
Vacas
topic Análise geoespacial
Bacteria
Bactéria
Clusters
Clusters
Cows
Geospatial analysis
Glândula mamária
Mammary gland
Vacas
description Mastitis is the primary disease that affects the mammary gland of cows in dairy herds, responsible for negative impacts on productivity and farm profitability. Its rapid detection is the main method of control and prevention. Therefore, there is a clear need for rapid diagnostic methods as essential tools for controlling this disease. This thesis was developed in four parts. The first part consists of a literature review focusing on the methods for the identification and diagnosis of mastitis, considering new technologies. The second part involves a bibliometric review seeking the main applications of artificial intelligence (AI) in the context of bovine mastitis, identifying the main AI tools for diagnosing and predicting mastitis. A total of 62 articles from the Scopus database, published between 2011 and 2021, were used, based on keyword searches with terms related to AI models. The results identified machine learning and mastitis as the most cited terms, with a significant increase between 2018 and 2021. The most cited model was artificial neural networks. It was concluded that the use of AI in bovine mastitis is related to mastitis detection as a vital tool for preventing this disease. Moving on to the third chapter, the study was developed to determine the incidence rate of clinical mastitis (CM) in dairy herds in Brazil and its association with risk factors. A total of 117,296 records from 2019 to 2023 of CM cases in dairy farms across the country were used, including data on date, location, CM severity, herd size, housing system, and pathogen diagnosis for calculating the clinical mastitis incidence rate (IRCM). The results showed that the average IRCM was 8.05 cases per month. The most isolated pathogens were Non-aureus Staphylococcus (NAS), Streptococcus agalactiae/dysgalactiae, Escherichia coli, Streptococcus uberis, and Staphylococcus aureus, and incidence rates were calculated for each pathogen. There was an association between IRCM by pathogen and the respective variables: region, housing system, climate, and herd size. Finally, the fourth chapter of the thesis was developed as a continuation of the IRCM analysis, but with a geospatial approach. The data from the third chapter were filtered to include only those with information on location, herd size, and microbiological results, resulting in 148,191 observations, which were then merged with a database containing geographic coordinates available from IBGE. The data were analyzed to identify the relationship between IRCM and the distribution of pathogens according to immediate geographic regions (IGR). The average IRCM was higher in regions located in the South and Southeast of the country, with clusters forming among regions within the same state. Clusters of the main pathogens were mostly found in the region of Minas Gerais. However, there are no studies indicating the specific occurrence of pathogens in this region, suggesting that possible local factors and movements between herds within the same region may influence these results.
publishDate 2024
dc.date.none.fl_str_mv 2024-11-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11139/tde-06022025-111538/
url https://www.teses.usp.br/teses/disponiveis/11/11139/tde-06022025-111538/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1839839140050370560