Evaluation of flow-induced noise, structure vibration, and flow morphology of R134a flowing through a thermostatic expansion valve

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Santos Filho, Erivelto dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18147/tde-16022023-173331/
Resumo: The flow-induced noise in refrigerators, vending machines, and air-conditionings deserves attention since residential/commercial environments provide good acoustic propagation conditions. As additional constraints, the expansion device is usually located in the indoor unit, deteriorating the silent environment and leading to unwanted and annoying noise to the customer. Up to the present date, a limited but increasing number of studies have explored the outcome of flow-induced noise in expansion devices such as capillary tubes, short-orifice tubes, thermostatic, and electronic expansion valves. The number of studies concerning flow-induced noise in thermostatic expansion valves are even more scarce. As novelty, the current doctoral thesis aims to fill a gap in the literature by experimentally evaluating the two-phase flow morphology upstream and downstream the flow restriction, structure vibration, and external and internal flowinduced noise of R134a flowing through a commercial thermostatic expansion valve. Results were obtained for a borosilicate test section with an internal diameter of 10.12 mm for mass flow rate from 0.02 to 0.04 kg/s (mass velocity from 4583 to 36701 kg/(m2 s)), saturation pressure and temperature upstream of the expansion valve from 7.7 to 10.2 bar and from 30 to 40ºC, respectively, expanding into a low-pressure reservoir at 4.1 bar and saturation temperature of 10ºC for inlet liquid subcooled degree from -15ºC up to vapor qualities of 15% and outlet vapor qualities ranging from 8 to 34 %. This study was carried out for a commercial expansion valve with outlet orifice diameter of 2.52 mm and aperture varying from 7 to 100%. Images of the flow morphology upstream and downstream of the expansion valve were obtained and correlated with the flow-induced noise and test section structure acceleration. Isolated bubbles, coalescing bubbles, churn, and annular flow patterns were observed in the images recorded upstream the expansion valve. Downstream of the valve, the flow morphology displayed a chaotic behavior due to the fluid flashing process, therefore it was not possible to classify the flow according to well-known flow patterns as defined in the literature. In addition, the velocity of the jets exiting the expansion valve orifice was estimated along the visualization section. The flashing jet was characterized as a wave of liquid followed by dispersed bubbles. The jets exhibited an approximately constant velocity of 20 m/s for subcooled liquid upstream of the valve, regardless of the experimental condition. As the subcooled liquid evolves into two-phase flow at the valve inlet, the jet velocity increases abruptly. On the other hand, under annular flow conditions at the valve inlet, the jet velocity remains approximately constant independently of the experimental condition. In addition, the jet velocity decreases as it flows along the visualization section. Jet frequencies observed at 48 and 96 Hz were similar to the values found for the external noise. The total sound pressure level of the external noise and the structure acceleration exhibited similar trends with increasing the vapor quality at the valve inlet. Moreover, superior structure acceleration and external and internal noise were found for isolated bubbles at the valve inlet. The frequency spectrum behavior of the external noise and acceleration of the test section were almost similar, while the noise evaluated at the valve decreases asymptotically with increasing frequency. Finally, the parametric analysis revealed that the external noise and acceleration of the structure are directly related to the flow pattern, jet velocity, and vapor quality; however, a noise dependence of the mass flow and pressure drop across the expansion device was not found. Furthermore, no parametric effect of the measured and estimated variables on the internal flow-induced noise was identified. Besides, statistically it was not found effect of the inlet/outlet vapor quality, mass flow rate, external noise, test section acceleration, pressure drop, and jet velocity on the internal noise.
id USP_d63bb82e115a2a4a664cc2304d1e5f98
oai_identifier_str oai:teses.usp.br:tde-16022023-173331
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Evaluation of flow-induced noise, structure vibration, and flow morphology of R134a flowing through a thermostatic expansion valveAvaliação do ruído induzido pelo escoamento, vibração da estrutura e morfologia do R134a através de uma válvula de expansão termostáticaAir-conditioningAr-condicionadoEscoamento bifásicoRefrigeraçãoRefrigerant flow-induced noiseRefrigerationRuído induzido pelo escoamentoThermostatic expansion valveTwo-phase flowVálvula de expansão térmostáticaThe flow-induced noise in refrigerators, vending machines, and air-conditionings deserves attention since residential/commercial environments provide good acoustic propagation conditions. As additional constraints, the expansion device is usually located in the indoor unit, deteriorating the silent environment and leading to unwanted and annoying noise to the customer. Up to the present date, a limited but increasing number of studies have explored the outcome of flow-induced noise in expansion devices such as capillary tubes, short-orifice tubes, thermostatic, and electronic expansion valves. The number of studies concerning flow-induced noise in thermostatic expansion valves are even more scarce. As novelty, the current doctoral thesis aims to fill a gap in the literature by experimentally evaluating the two-phase flow morphology upstream and downstream the flow restriction, structure vibration, and external and internal flowinduced noise of R134a flowing through a commercial thermostatic expansion valve. Results were obtained for a borosilicate test section with an internal diameter of 10.12 mm for mass flow rate from 0.02 to 0.04 kg/s (mass velocity from 4583 to 36701 kg/(m2 s)), saturation pressure and temperature upstream of the expansion valve from 7.7 to 10.2 bar and from 30 to 40ºC, respectively, expanding into a low-pressure reservoir at 4.1 bar and saturation temperature of 10ºC for inlet liquid subcooled degree from -15ºC up to vapor qualities of 15% and outlet vapor qualities ranging from 8 to 34 %. This study was carried out for a commercial expansion valve with outlet orifice diameter of 2.52 mm and aperture varying from 7 to 100%. Images of the flow morphology upstream and downstream of the expansion valve were obtained and correlated with the flow-induced noise and test section structure acceleration. Isolated bubbles, coalescing bubbles, churn, and annular flow patterns were observed in the images recorded upstream the expansion valve. Downstream of the valve, the flow morphology displayed a chaotic behavior due to the fluid flashing process, therefore it was not possible to classify the flow according to well-known flow patterns as defined in the literature. In addition, the velocity of the jets exiting the expansion valve orifice was estimated along the visualization section. The flashing jet was characterized as a wave of liquid followed by dispersed bubbles. The jets exhibited an approximately constant velocity of 20 m/s for subcooled liquid upstream of the valve, regardless of the experimental condition. As the subcooled liquid evolves into two-phase flow at the valve inlet, the jet velocity increases abruptly. On the other hand, under annular flow conditions at the valve inlet, the jet velocity remains approximately constant independently of the experimental condition. In addition, the jet velocity decreases as it flows along the visualization section. Jet frequencies observed at 48 and 96 Hz were similar to the values found for the external noise. The total sound pressure level of the external noise and the structure acceleration exhibited similar trends with increasing the vapor quality at the valve inlet. Moreover, superior structure acceleration and external and internal noise were found for isolated bubbles at the valve inlet. The frequency spectrum behavior of the external noise and acceleration of the test section were almost similar, while the noise evaluated at the valve decreases asymptotically with increasing frequency. Finally, the parametric analysis revealed that the external noise and acceleration of the structure are directly related to the flow pattern, jet velocity, and vapor quality; however, a noise dependence of the mass flow and pressure drop across the expansion device was not found. Furthermore, no parametric effect of the measured and estimated variables on the internal flow-induced noise was identified. Besides, statistically it was not found effect of the inlet/outlet vapor quality, mass flow rate, external noise, test section acceleration, pressure drop, and jet velocity on the internal noise.O ruído induzido pelo escoamento em refrigeradores e sistemas de condicionamento de ar merecem atenção, pois ambientes residenciais/comerciais proporcionam condições adequadas para propagação sonora. Dispositivos de expansão são normalmente posicionados no interior das residências, deteriorando o silêncio do ambiente e resultando em ruídos indesejados e incômodos ao usuário. Até o presente momento, um número crescente de estudos, porém limitado, exploraram o ruído induzido pelo escoamento em dispositivos de expansão, como tubos capilares, tubos de orifício, válvulas de expansão termostáticas e eletrônicas. O número de estudos abrangendo o ruído induzido pelo escoamento em uma válvula de expansão termostática é ainda mais escasso. Neste contexto, a presente tese de doutorado apresenta uma avaliação experimental inédita da morfologia do escoamento bifásico a montante e jusante do orifício de expansão, vibração da estrutura e do ruído interno e externo induzido pelo escoamento de R134a através de uma válvula de expansão termostática com características comercial. Os resultados foram obtidos para uma seção de teste de borossilicato com um diâmetro interno de 10,12 mm, vazão mássica de 0,02 a 0,04 kg/s (velocidade mássica de 4583 a 36701 kg/(m2 s)), pressão e temperatura de saturação a montante da válvula de expansão de 7,7 a 10,2 bar e 30 a 40ºC respectivamente, expandindo em um reservatório a pressão e temperatura de saturação de de 4,1 bar e 10ºC, respectivamente. Os testes foram executados para líquido subresfriado de até -15ºC até títulos de vapor de 15% a montante da válvula expandindo para títulos de vapor de 8 a 34 %. Imagens da morfologia do escoamento a montante e a jusante da válvula de expansão foram obtidas e correlacionadas com o ruído induzido pelo escoamento e a aceleração da seção de testes. Os padrões de bolhas isoladas, bolhas coalescentes, agitante e anular foram observadas nas imagens registradas a montante da válvula de expansão. A jusante da válvula, a morfologia do escoamento mostrou-se caótica devido ao processo de evaporação do fluido, não podendo ser classificada de acordo com os padrões de escoamento previamente definidos na literatura. Além disso, foi estimada a velocidade dos jatos partindo do orifício da válvula de expansão ao longo da seção de visualização. Os jatos foram caracterizados como frentes de líquido seguidas por bolhas dispersas. Os jatos exibiram velocidades aproximadamente constantes de 20 m/s para líquido sub-resfriado a montante da válvula, independentemente da condição experimental. A transição de líquido subresfriado para escoamento bifásico na entrada da válvula resultou em um aumento abrupto na velocidade do jato. Por outro lado, com o estabelecimento do padrão anular na entrada da válvula, a velocidade do jato manteve-se aproximadamente constante independente da condição experimental. Além disso, a velocidade do jato diminui ao longo da seção de visualização. As frequências de jato observadas em 48 e 96 Hz foram semelhantes às frequencias encontradas no ruído externo. A avaliação do ruído externo e da aceleração da seção de testes apresentaram tendências semelhantes com incremento do título de vapor. Além disso, observou-se elevados ruído externo, interno e vibrações da seção de testes para a presença de bolhas isoladas na entrada da válvula. O espectro de frequência apresentou comportamento semelhante para o ruído externo e aceleração da seção de testes, enquanto o ruído interno apresentou comportamento distinto. Por fim, a análise paramétrica revelou que o ruído externo e a aceleração da seção de testes estão diretamente relacionados ao padrão do escoamento, velocidade do jato e título de vapor; no entanto, são independentes do fluxo mássico e da diferença de pressão através do dispositivo de expansão. Além disso, estatisticamente não foi encontrado efeito do título de vapor de entrada/saída, vazão mássica, ruído externo, aceleração da seção de teste, queda de pressão e velocidade do jato sobre o ruído interno.Biblioteca Digitais de Teses e Dissertações da USPRibatski, GherhardtSantos Filho, Erivelto dos2022-12-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18147/tde-16022023-173331/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-03-06T11:46:44Zoai:teses.usp.br:tde-16022023-173331Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-03-06T11:46:44Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Evaluation of flow-induced noise, structure vibration, and flow morphology of R134a flowing through a thermostatic expansion valve
Avaliação do ruído induzido pelo escoamento, vibração da estrutura e morfologia do R134a através de uma válvula de expansão termostática
title Evaluation of flow-induced noise, structure vibration, and flow morphology of R134a flowing through a thermostatic expansion valve
spellingShingle Evaluation of flow-induced noise, structure vibration, and flow morphology of R134a flowing through a thermostatic expansion valve
Santos Filho, Erivelto dos
Air-conditioning
Ar-condicionado
Escoamento bifásico
Refrigeração
Refrigerant flow-induced noise
Refrigeration
Ruído induzido pelo escoamento
Thermostatic expansion valve
Two-phase flow
Válvula de expansão térmostática
title_short Evaluation of flow-induced noise, structure vibration, and flow morphology of R134a flowing through a thermostatic expansion valve
title_full Evaluation of flow-induced noise, structure vibration, and flow morphology of R134a flowing through a thermostatic expansion valve
title_fullStr Evaluation of flow-induced noise, structure vibration, and flow morphology of R134a flowing through a thermostatic expansion valve
title_full_unstemmed Evaluation of flow-induced noise, structure vibration, and flow morphology of R134a flowing through a thermostatic expansion valve
title_sort Evaluation of flow-induced noise, structure vibration, and flow morphology of R134a flowing through a thermostatic expansion valve
author Santos Filho, Erivelto dos
author_facet Santos Filho, Erivelto dos
author_role author
dc.contributor.none.fl_str_mv Ribatski, Gherhardt
dc.contributor.author.fl_str_mv Santos Filho, Erivelto dos
dc.subject.por.fl_str_mv Air-conditioning
Ar-condicionado
Escoamento bifásico
Refrigeração
Refrigerant flow-induced noise
Refrigeration
Ruído induzido pelo escoamento
Thermostatic expansion valve
Two-phase flow
Válvula de expansão térmostática
topic Air-conditioning
Ar-condicionado
Escoamento bifásico
Refrigeração
Refrigerant flow-induced noise
Refrigeration
Ruído induzido pelo escoamento
Thermostatic expansion valve
Two-phase flow
Válvula de expansão térmostática
description The flow-induced noise in refrigerators, vending machines, and air-conditionings deserves attention since residential/commercial environments provide good acoustic propagation conditions. As additional constraints, the expansion device is usually located in the indoor unit, deteriorating the silent environment and leading to unwanted and annoying noise to the customer. Up to the present date, a limited but increasing number of studies have explored the outcome of flow-induced noise in expansion devices such as capillary tubes, short-orifice tubes, thermostatic, and electronic expansion valves. The number of studies concerning flow-induced noise in thermostatic expansion valves are even more scarce. As novelty, the current doctoral thesis aims to fill a gap in the literature by experimentally evaluating the two-phase flow morphology upstream and downstream the flow restriction, structure vibration, and external and internal flowinduced noise of R134a flowing through a commercial thermostatic expansion valve. Results were obtained for a borosilicate test section with an internal diameter of 10.12 mm for mass flow rate from 0.02 to 0.04 kg/s (mass velocity from 4583 to 36701 kg/(m2 s)), saturation pressure and temperature upstream of the expansion valve from 7.7 to 10.2 bar and from 30 to 40ºC, respectively, expanding into a low-pressure reservoir at 4.1 bar and saturation temperature of 10ºC for inlet liquid subcooled degree from -15ºC up to vapor qualities of 15% and outlet vapor qualities ranging from 8 to 34 %. This study was carried out for a commercial expansion valve with outlet orifice diameter of 2.52 mm and aperture varying from 7 to 100%. Images of the flow morphology upstream and downstream of the expansion valve were obtained and correlated with the flow-induced noise and test section structure acceleration. Isolated bubbles, coalescing bubbles, churn, and annular flow patterns were observed in the images recorded upstream the expansion valve. Downstream of the valve, the flow morphology displayed a chaotic behavior due to the fluid flashing process, therefore it was not possible to classify the flow according to well-known flow patterns as defined in the literature. In addition, the velocity of the jets exiting the expansion valve orifice was estimated along the visualization section. The flashing jet was characterized as a wave of liquid followed by dispersed bubbles. The jets exhibited an approximately constant velocity of 20 m/s for subcooled liquid upstream of the valve, regardless of the experimental condition. As the subcooled liquid evolves into two-phase flow at the valve inlet, the jet velocity increases abruptly. On the other hand, under annular flow conditions at the valve inlet, the jet velocity remains approximately constant independently of the experimental condition. In addition, the jet velocity decreases as it flows along the visualization section. Jet frequencies observed at 48 and 96 Hz were similar to the values found for the external noise. The total sound pressure level of the external noise and the structure acceleration exhibited similar trends with increasing the vapor quality at the valve inlet. Moreover, superior structure acceleration and external and internal noise were found for isolated bubbles at the valve inlet. The frequency spectrum behavior of the external noise and acceleration of the test section were almost similar, while the noise evaluated at the valve decreases asymptotically with increasing frequency. Finally, the parametric analysis revealed that the external noise and acceleration of the structure are directly related to the flow pattern, jet velocity, and vapor quality; however, a noise dependence of the mass flow and pressure drop across the expansion device was not found. Furthermore, no parametric effect of the measured and estimated variables on the internal flow-induced noise was identified. Besides, statistically it was not found effect of the inlet/outlet vapor quality, mass flow rate, external noise, test section acceleration, pressure drop, and jet velocity on the internal noise.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18147/tde-16022023-173331/
url https://www.teses.usp.br/teses/disponiveis/18/18147/tde-16022023-173331/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258165014429696