Separation of plankton images from nonplankton images based on deep learning
Ano de defesa: | 2024 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.teses.usp.br/teses/disponiveis/45/45134/tde-06012025-100449/ |
Resumo: | Plankton are organisms, mainly of microscopic scale, that form the base of the marine food chain. They play a crucial role in the carbon cycle. Identifying plankton species and their distribution is of great importance in research on ocean ecosystems. Modern imaging technologies are enabling the capture of large volumes of underwater images. Despite advances in image classification techniques, classifying plankton images remains challenging. Challenges include issues related to image quality, including resolution, lighting, motion blur, focal blur, low contrast, among others. Another challenge is the presence of particles, such as detritus, among the collected images. One approach to simplify the classification of plankton images would consist of first removing all non-planktonic objects from the image collection in order to facilitate the task of recognizing plankton species. The objective of this work is to develop deep learning-based methods to separate images of non-planktonic objects from those captured with the intention of recognizing plankton species. To this end, we used a set of images provided by the Oceanographic Institute of USP, containing 56,702 images from 75 classes, including the detritus, bubble and shadow classes. Five distinct convolutional neural network (CNN) architectures were trained to perform the plankton/non-plankton separation. An accuracy of approximately 95% was achieved by all models, which led us to also investigate the reasons that prevent these classifiers from surpassing this level. A careful analysis of the results provides evidence that the intrinsic visual ambiguity of the images due to their low quality, especially of blurred images, is one of the main factors that limit the separation accuracy to 95%. The analysis also indicates that a more promising way to improve plankton/non-plankton separation may be to consider a third class, i.e., plankton/non-plankton/ambiguous, in order to stimulate research aimed at better handling of these ambiguous images. |
id |
USP_d739203cb4945315868169e372340052 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-06012025-100449 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
|
spelling |
Separation of plankton images from nonplankton images based on deep learningSeparação de imagens de plâncton de imagens não planctônicas baseada em aprendizado profundoAprendizado por transferênciaAprendizado profundoClassificação de imagensDeep learningDetritosDetritusImage classificationPlânctonPlanktonTransfer learningPlankton are organisms, mainly of microscopic scale, that form the base of the marine food chain. They play a crucial role in the carbon cycle. Identifying plankton species and their distribution is of great importance in research on ocean ecosystems. Modern imaging technologies are enabling the capture of large volumes of underwater images. Despite advances in image classification techniques, classifying plankton images remains challenging. Challenges include issues related to image quality, including resolution, lighting, motion blur, focal blur, low contrast, among others. Another challenge is the presence of particles, such as detritus, among the collected images. One approach to simplify the classification of plankton images would consist of first removing all non-planktonic objects from the image collection in order to facilitate the task of recognizing plankton species. The objective of this work is to develop deep learning-based methods to separate images of non-planktonic objects from those captured with the intention of recognizing plankton species. To this end, we used a set of images provided by the Oceanographic Institute of USP, containing 56,702 images from 75 classes, including the detritus, bubble and shadow classes. Five distinct convolutional neural network (CNN) architectures were trained to perform the plankton/non-plankton separation. An accuracy of approximately 95% was achieved by all models, which led us to also investigate the reasons that prevent these classifiers from surpassing this level. A careful analysis of the results provides evidence that the intrinsic visual ambiguity of the images due to their low quality, especially of blurred images, is one of the main factors that limit the separation accuracy to 95%. The analysis also indicates that a more promising way to improve plankton/non-plankton separation may be to consider a third class, i.e., plankton/non-plankton/ambiguous, in order to stimulate research aimed at better handling of these ambiguous images.Plâncton são organismos, principalmente de escala microscópica, que formam a base da cadeia alimentar marinha. Eles desempenham um papel crucial no ciclo do carbono. Identificar espécies de plâncton e sua distribuição é de grande importância na pesquisa sobre ecossistemas oceânicos. Tecnologias modernas de imagem estão permitindo a captura de grandes volumes de imagens subaquáticas. Apesar dos avanços nas técnicas de classificação de imagens, classificar imagens de plâncton continua desafiador. Os desafios incluem questões relacionadas à qualidade da imagem, incluindo resolução, iluminação, desfoque de movimento, desfoque focal, baixo contraste, entre outros. Outro desafio é a presença de partículas, como detritos, entre as imagens coletadas. Uma abordagem para simplificar a classificação de imagens de plâncton consistiria em primeiro remover todos os objetos não planctônicos da coleção de imagens, a fim de facilitar a tarefa de reconhecer espécies de plâncton. O objetivo deste trabalho é desenvolver métodos baseados em aprendizado profundo para separar imagens de objetos não planctônicos daqueles capturados com a intenção de reconhecer espécies de plâncton. Para tanto, utilizamos um conjunto de imagens fornecido pelo Instituto Oceanográfico da USP, contendo 56.702 imagens de 75 classes, incluindo as classes detrito, bolha e sombra. Cinco arquiteturas distintas de redes neurais convolucionais (CNN) foram treinadas para realizar a separação plâncton/não-plâncton. Uma precisão de aproximadamente 95% foi alcançada por todos os modelos, o que nos levou a investigar também os motivos que impedem esses classificadores de ultrapassar esse nível. Uma análise criteriosa dos resultados fornece evidências de que a ambiguidade visual intrínseca das imagens devido à sua baixa qualidade, especialmente de imagens borradas, é um dos principais fatores que limitam a precisão da separação a 95%. A análise também indica que uma maneira mais promissora de melhorar a separação plâncton/não-plâncton pode ser considerar uma terceira classe, ou seja, plâncton/não-plâncton/ambíguo, a fim de estimular pesquisas voltadas para um melhor manuseio dessas imagens ambíguas.Biblioteca Digitais de Teses e Dissertações da USPHirata, Nina Sumiko TomitaMallqui, Diego Mauricio Mansilla2024-11-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-06012025-100449/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-01-22T19:32:02Zoai:teses.usp.br:tde-06012025-100449Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-01-22T19:32:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Separation of plankton images from nonplankton images based on deep learning Separação de imagens de plâncton de imagens não planctônicas baseada em aprendizado profundo |
title |
Separation of plankton images from nonplankton images based on deep learning |
spellingShingle |
Separation of plankton images from nonplankton images based on deep learning Mallqui, Diego Mauricio Mansilla Aprendizado por transferência Aprendizado profundo Classificação de imagens Deep learning Detritos Detritus Image classification Plâncton Plankton Transfer learning |
title_short |
Separation of plankton images from nonplankton images based on deep learning |
title_full |
Separation of plankton images from nonplankton images based on deep learning |
title_fullStr |
Separation of plankton images from nonplankton images based on deep learning |
title_full_unstemmed |
Separation of plankton images from nonplankton images based on deep learning |
title_sort |
Separation of plankton images from nonplankton images based on deep learning |
author |
Mallqui, Diego Mauricio Mansilla |
author_facet |
Mallqui, Diego Mauricio Mansilla |
author_role |
author |
dc.contributor.none.fl_str_mv |
Hirata, Nina Sumiko Tomita |
dc.contributor.author.fl_str_mv |
Mallqui, Diego Mauricio Mansilla |
dc.subject.por.fl_str_mv |
Aprendizado por transferência Aprendizado profundo Classificação de imagens Deep learning Detritos Detritus Image classification Plâncton Plankton Transfer learning |
topic |
Aprendizado por transferência Aprendizado profundo Classificação de imagens Deep learning Detritos Detritus Image classification Plâncton Plankton Transfer learning |
description |
Plankton are organisms, mainly of microscopic scale, that form the base of the marine food chain. They play a crucial role in the carbon cycle. Identifying plankton species and their distribution is of great importance in research on ocean ecosystems. Modern imaging technologies are enabling the capture of large volumes of underwater images. Despite advances in image classification techniques, classifying plankton images remains challenging. Challenges include issues related to image quality, including resolution, lighting, motion blur, focal blur, low contrast, among others. Another challenge is the presence of particles, such as detritus, among the collected images. One approach to simplify the classification of plankton images would consist of first removing all non-planktonic objects from the image collection in order to facilitate the task of recognizing plankton species. The objective of this work is to develop deep learning-based methods to separate images of non-planktonic objects from those captured with the intention of recognizing plankton species. To this end, we used a set of images provided by the Oceanographic Institute of USP, containing 56,702 images from 75 classes, including the detritus, bubble and shadow classes. Five distinct convolutional neural network (CNN) architectures were trained to perform the plankton/non-plankton separation. An accuracy of approximately 95% was achieved by all models, which led us to also investigate the reasons that prevent these classifiers from surpassing this level. A careful analysis of the results provides evidence that the intrinsic visual ambiguity of the images due to their low quality, especially of blurred images, is one of the main factors that limit the separation accuracy to 95%. The analysis also indicates that a more promising way to improve plankton/non-plankton separation may be to consider a third class, i.e., plankton/non-plankton/ambiguous, in order to stimulate research aimed at better handling of these ambiguous images. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-11-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-06012025-100449/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-06012025-100449/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1831214759550124032 |