Process-based crop models calibration and structure affect data assimilation for estimating sugarcane yield

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Fattori Junior, Izael Martins
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/11/11152/tde-15092022-153908/
Resumo: Sugarcane is an important feedstock of sugar and ethanol. Thus, strategies to follow the quantity and the availability of sugarcane are essential. Different methods have been developed for yield estimation and the use of process-based crop models (PBM) with data assimilation (DA) stands out. Due to the capability of using two different sources of information, and their respective uncertainty for crop yield estimation. However, inconsistencies between PBM and the assimilated data were reported in the literature, which led to systematic errors and low performance of the simulations. Such limitation was connected to the absence or poor calibration of PBMs and to the simplification of the PBMs structure to represent crop development traits. Thus, this study aimed to evaluate the impact of using one sugarcane cultivar-based calibration on other cultivars with DA methods and compare this source of uncertainties with others. Moreover, evaluate how the difference between two PBM, regarding their structure of specific sugarcane traits, affects the performance of DA methods. For that, firstly, the DSSAT/SAMUCA (DS) was used to simulate 22 field experiments and quantify the impact of using one cultivar specific calibration (cv. RB867515) compared to four non-calibrated cultivars (cv. NCo376, SP832847, R570, RB72454), on stalk fresh yield (SFY) predictions. This was performed for three different DA methods, Ensemble Kalman filter (EnKF), Ensemble smoother (ES), and Weighted mean (WM) to assimilate leaf area index (LAI) retrieved from field observation and compared to the PBM simulation without DA (Open-Loop, OP). Moreover, we analyzed the influence of the timing and amount of LAI data, to compare with the impact of calibration. Second, two different PBM, in terms of structure, one more detailed in terms of structure (DS) and other more general (WOFOST, WO), were compared to the performance of simulate SFY with the use of EnKF and LAI. The LAI was retrieved from Landsat 7 ETM+ and 8 OLI, from fields of a sugarmill database. Thus, the simulations with the EnKF of these fields were compared to the OP simulations. The results showed that the use of a genotype-specific calibration had substantially higher accuracy compared to non-calibrated, for the three DA methods. The simulation of non-calibrated cultivar experiments had a higher accuracy increase, for EnkF and ES, however, WM had opposite results. In this regard, the accuracy of the simulations with DA had a high correlation OP simulations accuracy, which was higher than the correlation with the number of LAI observations assimilated. Furthermore, our results indicated that the calibration performance and the structure of the PBMs influenced the OP simulations, with DS showing higher performance, compared to WO. However, with DA the performance was limited by the inconsistency between Landsat LAI and the LAI simulated by the PBMs, despite the improvements. Thus, assimilated Landsat LAI had the potential to improve yield estimation, but the better descriptions of DS did not inhibit the error inconsistency. Therefore, this study emphasized that the use of DA required previously calibrated PBMs regarding cultivar traits to ensure a higher performance. In addition, more detailed PBMs in terms of process description can benefit from their detailed description to improve the performance of OP simulations and consequently with DA.
id USP_dcbb75be3635032f62f717d214c5cbc4
oai_identifier_str oai:teses.usp.br:tde-15092022-153908
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Process-based crop models calibration and structure affect data assimilation for estimating sugarcane yieldCalibração e estrutura de modelos baseados em processos para cana-de-açúcar influenciam na assimilação de dados para estimativa de produtividadeSaccharum officinarum L.Saccharum officinarum L.CalibraçãoCalibrationDSSATDSSATÍndice de área foliarLeaf area indexRemote sensingSensoriamento remotoWOFOSTWOFOSTSugarcane is an important feedstock of sugar and ethanol. Thus, strategies to follow the quantity and the availability of sugarcane are essential. Different methods have been developed for yield estimation and the use of process-based crop models (PBM) with data assimilation (DA) stands out. Due to the capability of using two different sources of information, and their respective uncertainty for crop yield estimation. However, inconsistencies between PBM and the assimilated data were reported in the literature, which led to systematic errors and low performance of the simulations. Such limitation was connected to the absence or poor calibration of PBMs and to the simplification of the PBMs structure to represent crop development traits. Thus, this study aimed to evaluate the impact of using one sugarcane cultivar-based calibration on other cultivars with DA methods and compare this source of uncertainties with others. Moreover, evaluate how the difference between two PBM, regarding their structure of specific sugarcane traits, affects the performance of DA methods. For that, firstly, the DSSAT/SAMUCA (DS) was used to simulate 22 field experiments and quantify the impact of using one cultivar specific calibration (cv. RB867515) compared to four non-calibrated cultivars (cv. NCo376, SP832847, R570, RB72454), on stalk fresh yield (SFY) predictions. This was performed for three different DA methods, Ensemble Kalman filter (EnKF), Ensemble smoother (ES), and Weighted mean (WM) to assimilate leaf area index (LAI) retrieved from field observation and compared to the PBM simulation without DA (Open-Loop, OP). Moreover, we analyzed the influence of the timing and amount of LAI data, to compare with the impact of calibration. Second, two different PBM, in terms of structure, one more detailed in terms of structure (DS) and other more general (WOFOST, WO), were compared to the performance of simulate SFY with the use of EnKF and LAI. The LAI was retrieved from Landsat 7 ETM+ and 8 OLI, from fields of a sugarmill database. Thus, the simulations with the EnKF of these fields were compared to the OP simulations. The results showed that the use of a genotype-specific calibration had substantially higher accuracy compared to non-calibrated, for the three DA methods. The simulation of non-calibrated cultivar experiments had a higher accuracy increase, for EnkF and ES, however, WM had opposite results. In this regard, the accuracy of the simulations with DA had a high correlation OP simulations accuracy, which was higher than the correlation with the number of LAI observations assimilated. Furthermore, our results indicated that the calibration performance and the structure of the PBMs influenced the OP simulations, with DS showing higher performance, compared to WO. However, with DA the performance was limited by the inconsistency between Landsat LAI and the LAI simulated by the PBMs, despite the improvements. Thus, assimilated Landsat LAI had the potential to improve yield estimation, but the better descriptions of DS did not inhibit the error inconsistency. Therefore, this study emphasized that the use of DA required previously calibrated PBMs regarding cultivar traits to ensure a higher performance. In addition, more detailed PBMs in terms of process description can benefit from their detailed description to improve the performance of OP simulations and consequently with DA.A cana-de-açúcar é uma importante matéria-prima para produção de açúcar e etanol, portanto, estratégias para acompanhar a quantidade e a disponibilidade de cana-de-açúcar são essenciais. Diferentes métodos têm sido desenvolvidos para estimativa de produtividade, destacando-se o uso de modelos de cultura baseados em processos (MBP) junto à assimilação de dados (AD). Pois esses métodos juntos usam duas fontes diferentes de informação, e suas respectivas incertezas para a estimativa de produtividade. Entretanto, inconsistências entre o MBP e os dados assimilados foram relatadas na literatura, o que leva a erros sistemáticos e baixo desempenho das simulações. Essa limitação está estritamente ligada à ausência ou má calibração do MBP e às simplificações dos processos do MBP em representar as características de desenvolvimento da cultura. Portanto, este estudo teve como objetivo avaliar o impacto do uso de uma calibração especifica para um cultivar de cana-de-açúcar em outras cultivares, utilizando três métodos de AD e comparar essa fonte de incertezas com outras. Ademais, avaliar como a diferença entre dois MBP, em relação às estruturas e descrições das características específicas da cana-de-açúcar, afetam o desempenho dos métodos de AD. Para isso, primeiramente, com o DSSAT/SAMUCA (DS) foram simulados 22 experimentos de campo, para quantificar o impacto do uso dos parâmetros calibrados para cultivar (cv. RB867515) nas simulações de experimentos com cultivares não calibradas (cv. NCo376 , SP832847, R570, RB72454), para estimar peso de colmo fresco (PCF). Isso foi realizado para três métodos diferentes de AD, Ensemble Kalman filter (EnKF), Ensemble smoother (ES), e Weighted mean (WM) para assimilar o índice de área foliar (IAF) obtido diretamente do campo e comparado com a simulação sem AD (Open-loop, OP). Além disso, analisamos a influência do momento e da quantidade de dados de IAF, para comparar com o impacto da calibração. Em segundo lugar, dois MBP diferentes, em termos de estrutura, um mais detalhado para descrever características da cana-de-açúcar (DS) e outro mais generalista (WOFOST, WO), foram comparados para acessar o desempenho de simular PCF com o uso de EnKF assimilando IAF. O IAF foi obtido dos sensores Landsat 7 ETM+ e 8 OLI, de talhões de um banco de dados de uma usina de açúcar. Portanto, as simulações com o EnKF desses talhões foram comparadas com as simulações OP. Os resultados mostraram que o uso de uma calibração específica de genótipo teve acurácia substancialmente maior em comparação com as não calibradas. A simulação de experimentos com as cultivares não calibradas apresentou um aumento de acurácia maior, para EnkF e ES, porém, o WM teve resultados opostos. Portanto, a acurácia das simulações com AD apresentou uma alta correlação com a acurácia das simulações OP, sendo essa correlação superior a influência do número de observações de IAF assimilados. Nesse sentido, nossos resultados indicaram que o desempenho das calibrações e a estrutura dos MBPs influenciaram as simulações de OP, com DS apresentando desempenho superior ao WO. No entanto, com o AD o desempenho foi limitado pela inconsistência entre o IAF do Landsat e o IAF simulado pelos MBPs, apesar do aumento de acurácia e precisão. Com isso, assimilar IAF obtido pelo Landsat apresentou potencial devido a melhora de estimativa de PCF, entretanto, a melhor descrição dos processos do DS não conseguiu inibir a inconsistência entre o MBP e o IAF assimilado. Portanto, este estudo ressalta que para a utilização da AD, os MBP devem ser previamente calibrados, seguindo as características das cultivares, para garantir um melhor desempenho. Ademais, os MBPs mais específicos podem se beneficiar de sua descrição detalhada para melhorar o desempenho das simulações de OP e consequentemente com AD.Biblioteca Digitais de Teses e Dissertações da USPMarin, Fábio RicardoFattori Junior, Izael Martins2022-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11152/tde-15092022-153908/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-09-16T18:40:59Zoai:teses.usp.br:tde-15092022-153908Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-09-16T18:40:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Process-based crop models calibration and structure affect data assimilation for estimating sugarcane yield
Calibração e estrutura de modelos baseados em processos para cana-de-açúcar influenciam na assimilação de dados para estimativa de produtividade
title Process-based crop models calibration and structure affect data assimilation for estimating sugarcane yield
spellingShingle Process-based crop models calibration and structure affect data assimilation for estimating sugarcane yield
Fattori Junior, Izael Martins
Saccharum officinarum L.
Saccharum officinarum L.
Calibração
Calibration
DSSAT
DSSAT
Índice de área foliar
Leaf area index
Remote sensing
Sensoriamento remoto
WOFOST
WOFOST
title_short Process-based crop models calibration and structure affect data assimilation for estimating sugarcane yield
title_full Process-based crop models calibration and structure affect data assimilation for estimating sugarcane yield
title_fullStr Process-based crop models calibration and structure affect data assimilation for estimating sugarcane yield
title_full_unstemmed Process-based crop models calibration and structure affect data assimilation for estimating sugarcane yield
title_sort Process-based crop models calibration and structure affect data assimilation for estimating sugarcane yield
author Fattori Junior, Izael Martins
author_facet Fattori Junior, Izael Martins
author_role author
dc.contributor.none.fl_str_mv Marin, Fábio Ricardo
dc.contributor.author.fl_str_mv Fattori Junior, Izael Martins
dc.subject.por.fl_str_mv Saccharum officinarum L.
Saccharum officinarum L.
Calibração
Calibration
DSSAT
DSSAT
Índice de área foliar
Leaf area index
Remote sensing
Sensoriamento remoto
WOFOST
WOFOST
topic Saccharum officinarum L.
Saccharum officinarum L.
Calibração
Calibration
DSSAT
DSSAT
Índice de área foliar
Leaf area index
Remote sensing
Sensoriamento remoto
WOFOST
WOFOST
description Sugarcane is an important feedstock of sugar and ethanol. Thus, strategies to follow the quantity and the availability of sugarcane are essential. Different methods have been developed for yield estimation and the use of process-based crop models (PBM) with data assimilation (DA) stands out. Due to the capability of using two different sources of information, and their respective uncertainty for crop yield estimation. However, inconsistencies between PBM and the assimilated data were reported in the literature, which led to systematic errors and low performance of the simulations. Such limitation was connected to the absence or poor calibration of PBMs and to the simplification of the PBMs structure to represent crop development traits. Thus, this study aimed to evaluate the impact of using one sugarcane cultivar-based calibration on other cultivars with DA methods and compare this source of uncertainties with others. Moreover, evaluate how the difference between two PBM, regarding their structure of specific sugarcane traits, affects the performance of DA methods. For that, firstly, the DSSAT/SAMUCA (DS) was used to simulate 22 field experiments and quantify the impact of using one cultivar specific calibration (cv. RB867515) compared to four non-calibrated cultivars (cv. NCo376, SP832847, R570, RB72454), on stalk fresh yield (SFY) predictions. This was performed for three different DA methods, Ensemble Kalman filter (EnKF), Ensemble smoother (ES), and Weighted mean (WM) to assimilate leaf area index (LAI) retrieved from field observation and compared to the PBM simulation without DA (Open-Loop, OP). Moreover, we analyzed the influence of the timing and amount of LAI data, to compare with the impact of calibration. Second, two different PBM, in terms of structure, one more detailed in terms of structure (DS) and other more general (WOFOST, WO), were compared to the performance of simulate SFY with the use of EnKF and LAI. The LAI was retrieved from Landsat 7 ETM+ and 8 OLI, from fields of a sugarmill database. Thus, the simulations with the EnKF of these fields were compared to the OP simulations. The results showed that the use of a genotype-specific calibration had substantially higher accuracy compared to non-calibrated, for the three DA methods. The simulation of non-calibrated cultivar experiments had a higher accuracy increase, for EnkF and ES, however, WM had opposite results. In this regard, the accuracy of the simulations with DA had a high correlation OP simulations accuracy, which was higher than the correlation with the number of LAI observations assimilated. Furthermore, our results indicated that the calibration performance and the structure of the PBMs influenced the OP simulations, with DS showing higher performance, compared to WO. However, with DA the performance was limited by the inconsistency between Landsat LAI and the LAI simulated by the PBMs, despite the improvements. Thus, assimilated Landsat LAI had the potential to improve yield estimation, but the better descriptions of DS did not inhibit the error inconsistency. Therefore, this study emphasized that the use of DA required previously calibrated PBMs regarding cultivar traits to ensure a higher performance. In addition, more detailed PBMs in terms of process description can benefit from their detailed description to improve the performance of OP simulations and consequently with DA.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11152/tde-15092022-153908/
url https://www.teses.usp.br/teses/disponiveis/11/11152/tde-15092022-153908/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258181873434624