Network-based fMRI-neurofeedback training applied to sustained attention

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Pamplona, Gustavo Santo Pedro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/59/59135/tde-31102018-081404/
Resumo: Attention is a key mental function in everyday life, but unfortunately we easily get distracted. The brain correlates underlying sustained attention, the so-called sustained attention network (SAN), have been well identified, as have the brain correlates underlying mind-wandering, the so-called default mode network (DMN). Nevertheless, even though we know about the underlying brain processes, this knowledge has not yet been translated in advanced brain-based attention training protocols. Here we proposed to use a novel brain imaging technique based on real-time functional magnetic resonance imaging (fMRI) to provide individuals with information about ongoing levels of activity in the attention and the default mode networks. To the best of our knowledge, this is the first study to show that, with the help of that fMRI-neurofeedback, individuals can learn how to improve controlling of, at the same time, SAN activation and DMN deactivation. This learning process was explained mainly in terms of DMN deactivation. Behavioral effects were observed when separating a group with the best learners in an overall measure of attention and specifically in the task-switching ability, controlled by a test-retest group performing the same behavioral tests battery. Neurofeedback-induced functional connectivity changes were also observed in multiple brain regions positively and negatively related to attention. Although the behavioral effects were no longer present two months after training, participants still held the learned ability of controlling self-regulation of the concerned networks. This approach potentially provides a non-invasive and non-pharmacological tool to deliver general enhancements in the attention ability for healthy subjects and it can be potentially beneficial to many neurological and psychiatric patients. We also show in this thesis compelling evidence that brain regions definition and other experimental parameters are crucial for inducing learning of self-regulation via fMRI-neurofeedback, in a similar study also considering differential signal of attention-related competitive networks. We finally present Personode, a useful, easy to use, and open access toolbox to neuroimaging researchers, for independent component analysis maps classification into canonical resting-state networks and regions-of--interest definition in individual and group levels. We also show that the toolbox leads to better results for task-induced activation and functional connectivity analyses.
id USP_dcda457f4317cac9af2be18a4592fd9b
oai_identifier_str oai:teses.usp.br:tde-31102018-081404
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Network-based fMRI-neurofeedback training applied to sustained attentionTreinamento por fMRI-neurofeedback baseado em redes aplicado à atenção sustentadaAlterações comportamentais ; Atenção ; fMRI em tempo real ; Neurofeedback ; Rede de atenção sustentada ; Rede de modo padrãoAttention ; Behavioral changes ; Default Mode Network ; Neurofeedback ; Real-time fMRI ; Sustained attention networkAttention is a key mental function in everyday life, but unfortunately we easily get distracted. The brain correlates underlying sustained attention, the so-called sustained attention network (SAN), have been well identified, as have the brain correlates underlying mind-wandering, the so-called default mode network (DMN). Nevertheless, even though we know about the underlying brain processes, this knowledge has not yet been translated in advanced brain-based attention training protocols. Here we proposed to use a novel brain imaging technique based on real-time functional magnetic resonance imaging (fMRI) to provide individuals with information about ongoing levels of activity in the attention and the default mode networks. To the best of our knowledge, this is the first study to show that, with the help of that fMRI-neurofeedback, individuals can learn how to improve controlling of, at the same time, SAN activation and DMN deactivation. This learning process was explained mainly in terms of DMN deactivation. Behavioral effects were observed when separating a group with the best learners in an overall measure of attention and specifically in the task-switching ability, controlled by a test-retest group performing the same behavioral tests battery. Neurofeedback-induced functional connectivity changes were also observed in multiple brain regions positively and negatively related to attention. Although the behavioral effects were no longer present two months after training, participants still held the learned ability of controlling self-regulation of the concerned networks. This approach potentially provides a non-invasive and non-pharmacological tool to deliver general enhancements in the attention ability for healthy subjects and it can be potentially beneficial to many neurological and psychiatric patients. We also show in this thesis compelling evidence that brain regions definition and other experimental parameters are crucial for inducing learning of self-regulation via fMRI-neurofeedback, in a similar study also considering differential signal of attention-related competitive networks. We finally present Personode, a useful, easy to use, and open access toolbox to neuroimaging researchers, for independent component analysis maps classification into canonical resting-state networks and regions-of--interest definition in individual and group levels. We also show that the toolbox leads to better results for task-induced activation and functional connectivity analyses.A atenção é uma função mental crucial na vida cotidiana, mas infelizmente distrai-se facilmente. Os fundamentos cerebrais que sustentam a atenção, a chamada rede de atenção, foram satisfatoriamente identificados, assim como os fundamentos cerebrais que sustentam a divagação, a chamada rede de modo padrão. Entretanto, embora tais processos sejam conhecidos, este conhecimento ainda não foi transformado em protocolos avançados de treinamento de atenção baseado na atividade cerebral. Portanto, é proposto o uso de uma nova técnica baseada em imageamento por ressonância funcional (fMRI) em tempo real para proporcionar aos indivíduos informação sobre os níveis de atividade cerebral atuais nas redes de atenção e de modo padrão. Segundo nosso conhecimento atual, esse é o primeiro estudo a mostrar que, com o auxílio do neurofeedback baseado em fMRI, indivíduos podem aprender como melhorar o controle da ativação da rede de atenção e da desativação da rede de modo padrão ao mesmo tempo. Este processo de treinamento poderia ser explicado principalmente em termos da desativação da rede de modo padrão. Efeitos comportamentais foram observados, ao separar um grupo com os melhores aprendizes, em uma medida de atenção geral e, especificamente, na habilidade de alternação de tarefas, controlado por um grupo teste-reteste realizando a mesma bateria de testes comportamentais. Alterações em conectividade funcional induzidas por neurofeedback foram também reveladas em múltiplas regiões cerebrais positiva e negativamente relacionadas à atenção. Embora os efeitos comportamentais não puderam ser constatados depois de dois meses após o treinamento, os participantes ainda mantiveram a habilidade de controlar a autorregulação das redes em questão. Esse método provê uma ferramenta não-invasiva e não-farmacológica para proporcionar melhorias gerais na habilidade de atenção para sujeitos saudáveis, o que pode ser potencialmente benéfico para muitos pacientes de desordens neurológicas e psiquiátricas. Nesta tese, são mostradas evidências convincentes de que a definição de redes cerebrais e outros parâmetros experimentais de neurofeedback baseado em fMRI são decisivos para a indução do aprendizado de autorregulação, em um estudo similar, também considerando o sinal diferencial de redes competitivas relacionadas à atenção. Finalmente, é apresentado Personode, uma ferramenta útil, de fácil utilização e de livre acesso direcionado a pesquisadores em neuroimagem, para classificação de mapas produzidos por uma análise de componentes independentes em redes de repouso canônicas e definições de regiões de interesse em níveis individuais e de grupo. É também mostrado que a ferramenta conduz a melhores resultados para análises de ativação induzida à tarefa e conectividade funcional.Biblioteca Digitais de Teses e Dissertações da USPSalmon, Carlos Ernesto GarridoPamplona, Gustavo Santo Pedro2018-09-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/59/59135/tde-31102018-081404/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-04-09T23:21:59Zoai:teses.usp.br:tde-31102018-081404Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-09T23:21:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Network-based fMRI-neurofeedback training applied to sustained attention
Treinamento por fMRI-neurofeedback baseado em redes aplicado à atenção sustentada
title Network-based fMRI-neurofeedback training applied to sustained attention
spellingShingle Network-based fMRI-neurofeedback training applied to sustained attention
Pamplona, Gustavo Santo Pedro
Alterações comportamentais ; Atenção ; fMRI em tempo real ; Neurofeedback ; Rede de atenção sustentada ; Rede de modo padrão
Attention ; Behavioral changes ; Default Mode Network ; Neurofeedback ; Real-time fMRI ; Sustained attention network
title_short Network-based fMRI-neurofeedback training applied to sustained attention
title_full Network-based fMRI-neurofeedback training applied to sustained attention
title_fullStr Network-based fMRI-neurofeedback training applied to sustained attention
title_full_unstemmed Network-based fMRI-neurofeedback training applied to sustained attention
title_sort Network-based fMRI-neurofeedback training applied to sustained attention
author Pamplona, Gustavo Santo Pedro
author_facet Pamplona, Gustavo Santo Pedro
author_role author
dc.contributor.none.fl_str_mv Salmon, Carlos Ernesto Garrido
dc.contributor.author.fl_str_mv Pamplona, Gustavo Santo Pedro
dc.subject.por.fl_str_mv Alterações comportamentais ; Atenção ; fMRI em tempo real ; Neurofeedback ; Rede de atenção sustentada ; Rede de modo padrão
Attention ; Behavioral changes ; Default Mode Network ; Neurofeedback ; Real-time fMRI ; Sustained attention network
topic Alterações comportamentais ; Atenção ; fMRI em tempo real ; Neurofeedback ; Rede de atenção sustentada ; Rede de modo padrão
Attention ; Behavioral changes ; Default Mode Network ; Neurofeedback ; Real-time fMRI ; Sustained attention network
description Attention is a key mental function in everyday life, but unfortunately we easily get distracted. The brain correlates underlying sustained attention, the so-called sustained attention network (SAN), have been well identified, as have the brain correlates underlying mind-wandering, the so-called default mode network (DMN). Nevertheless, even though we know about the underlying brain processes, this knowledge has not yet been translated in advanced brain-based attention training protocols. Here we proposed to use a novel brain imaging technique based on real-time functional magnetic resonance imaging (fMRI) to provide individuals with information about ongoing levels of activity in the attention and the default mode networks. To the best of our knowledge, this is the first study to show that, with the help of that fMRI-neurofeedback, individuals can learn how to improve controlling of, at the same time, SAN activation and DMN deactivation. This learning process was explained mainly in terms of DMN deactivation. Behavioral effects were observed when separating a group with the best learners in an overall measure of attention and specifically in the task-switching ability, controlled by a test-retest group performing the same behavioral tests battery. Neurofeedback-induced functional connectivity changes were also observed in multiple brain regions positively and negatively related to attention. Although the behavioral effects were no longer present two months after training, participants still held the learned ability of controlling self-regulation of the concerned networks. This approach potentially provides a non-invasive and non-pharmacological tool to deliver general enhancements in the attention ability for healthy subjects and it can be potentially beneficial to many neurological and psychiatric patients. We also show in this thesis compelling evidence that brain regions definition and other experimental parameters are crucial for inducing learning of self-regulation via fMRI-neurofeedback, in a similar study also considering differential signal of attention-related competitive networks. We finally present Personode, a useful, easy to use, and open access toolbox to neuroimaging researchers, for independent component analysis maps classification into canonical resting-state networks and regions-of--interest definition in individual and group levels. We also show that the toolbox leads to better results for task-induced activation and functional connectivity analyses.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/59/59135/tde-31102018-081404/
url http://www.teses.usp.br/teses/disponiveis/59/59135/tde-31102018-081404/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258609049665536