Um algoritmo eficiente para o crescimento de redes sobre o grafo probabilístico completo do sistema de regulação gênica considerado

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Lima, Leandro de Araujo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-22012010-120624/
Resumo: Sabe-se biologicamente que o nível de expressão dos genes está entre os fatores podem indicar o quanto estes estão em atividade em determinado momento. Avanços na tecnologia de microarray têm possibilitado medir os níveis de expressão de milhares de genes ao mesmo tempo. Esses dados podem ser medidos de maneira a formarem uma série temporal, que pode ser tratada estatisticamente para serem obtidas informações sobre as relações entre os genes. Já foram propostos vários modelos para tratar redes gênicas matematicamente. Esses modelos têm evoluído de forma a agregarem cada vez mais características das redes reais. Neste trabalho, será feita uma revisão de modelos discretos para redes de regulação gênica, primeiramente com as redes Booleanas, modelo determinístico, e depois as redes Booleanas probabilísticas e as redes genéticas probabilísticas, modelos que tratam o problema estocasticamente. Usando o último modelo citado, serão mostrados dois métodos para estimar o nível de predição entre os genes, coeficiente de determinação e informação mútua. Além de se estimar essas relações, foram desenvolvidas algumas técnicas para construir redes a partir de genes específicos, que são chamados sementes. Também serão apresentados dois desses métodos de crescimento de redes e, baseado neles, um terceiro método que foi desenvolvido neste trabalho. Foi criado um algoritmo que realiza o crescimento da rede mudando as sementes a cada iteração, agrupando estes genes em grupos com diferentes níveis de confiança, chamados camadas. O algoritmo também usa outros critérios para agregar novos genes à rede. Após a explanação desses métodos, será mostrado um software que, a partir de dados temporais de expressão gênica, estima as dependências entre os genes e executa o crescimento da rede em torno de genes que se deseje estudar. Também serão mostradas as melhorias feitas no programa. Ao final, serão apresentados alguns testes feitos com dados do Plasmodium falciparum, parasita causador da malária.
id USP_de4244f836fb82a2f5ec73fc345dedc2
oai_identifier_str oai:teses.usp.br:tde-22012010-120624
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Um algoritmo eficiente para o crescimento de redes sobre o grafo probabilístico completo do sistema de regulação gênica consideradoAn efficient algorithm for growing networks on the regulatory gene system complete random graphcoefficient of determinationcoeficiente de determinaçãocrescimento de redesinformação mútua médiaMean mutual informationnetwork growthProbabilistic genetic networksRedes gênicas probabilísticasSabe-se biologicamente que o nível de expressão dos genes está entre os fatores podem indicar o quanto estes estão em atividade em determinado momento. Avanços na tecnologia de microarray têm possibilitado medir os níveis de expressão de milhares de genes ao mesmo tempo. Esses dados podem ser medidos de maneira a formarem uma série temporal, que pode ser tratada estatisticamente para serem obtidas informações sobre as relações entre os genes. Já foram propostos vários modelos para tratar redes gênicas matematicamente. Esses modelos têm evoluído de forma a agregarem cada vez mais características das redes reais. Neste trabalho, será feita uma revisão de modelos discretos para redes de regulação gênica, primeiramente com as redes Booleanas, modelo determinístico, e depois as redes Booleanas probabilísticas e as redes genéticas probabilísticas, modelos que tratam o problema estocasticamente. Usando o último modelo citado, serão mostrados dois métodos para estimar o nível de predição entre os genes, coeficiente de determinação e informação mútua. Além de se estimar essas relações, foram desenvolvidas algumas técnicas para construir redes a partir de genes específicos, que são chamados sementes. Também serão apresentados dois desses métodos de crescimento de redes e, baseado neles, um terceiro método que foi desenvolvido neste trabalho. Foi criado um algoritmo que realiza o crescimento da rede mudando as sementes a cada iteração, agrupando estes genes em grupos com diferentes níveis de confiança, chamados camadas. O algoritmo também usa outros critérios para agregar novos genes à rede. Após a explanação desses métodos, será mostrado um software que, a partir de dados temporais de expressão gênica, estima as dependências entre os genes e executa o crescimento da rede em torno de genes que se deseje estudar. Também serão mostradas as melhorias feitas no programa. Ao final, serão apresentados alguns testes feitos com dados do Plasmodium falciparum, parasita causador da malária.It\'s known that gene expression levels are among the factors that can show how genes are active in certain moment. Advances in microarray technology have given the possibility to measure expression levels of thousands of genes in a certain instant of time. These data constitute time series that we can treat statistically in order to get information genes relationships. Many models were proposed to treat gene networks mathematically. These models have evolved to aggregate more and more real networks features. In this work, it is made a brief review of discrete models of regulatory genetic networks, initially Boolean networks, a deterministic model, and then probabilistic Boolean networks and probabilistic genetic networks, models that treat the problem stochastically. Using the last model cited, two methods to estimate the prediction level among genes are shown, coefficient of determination and mutual information. Besides estimating these relations, some techniques have been developed to construct networks from specific genes, that are called seeds. It will be also shown two methods of network growth and, based on these, a third method that was developed during this work. An algorithm was created, such that it grows the network changing the seeds in each iteration, grouping these genes in groups with different level of confidence, called layers. The algorithm also uses other criteria to add new genes to the network. After studying these methods, it will be shown a software that, using time series gene expression data, estimates dependences among genes and runs the network growing process around chosen genes. It is also presented the improvements made in the program. Finally, some tests using data of Plasmodium falciparum, malaria parasite, are shown.Biblioteca Digitais de Teses e Dissertações da USPBarrera, JuniorLima, Leandro de Araujo2009-08-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-22012010-120624/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:01Zoai:teses.usp.br:tde-22012010-120624Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Um algoritmo eficiente para o crescimento de redes sobre o grafo probabilístico completo do sistema de regulação gênica considerado
An efficient algorithm for growing networks on the regulatory gene system complete random graph
title Um algoritmo eficiente para o crescimento de redes sobre o grafo probabilístico completo do sistema de regulação gênica considerado
spellingShingle Um algoritmo eficiente para o crescimento de redes sobre o grafo probabilístico completo do sistema de regulação gênica considerado
Lima, Leandro de Araujo
coefficient of determination
coeficiente de determinação
crescimento de redes
informação mútua média
Mean mutual information
network growth
Probabilistic genetic networks
Redes gênicas probabilísticas
title_short Um algoritmo eficiente para o crescimento de redes sobre o grafo probabilístico completo do sistema de regulação gênica considerado
title_full Um algoritmo eficiente para o crescimento de redes sobre o grafo probabilístico completo do sistema de regulação gênica considerado
title_fullStr Um algoritmo eficiente para o crescimento de redes sobre o grafo probabilístico completo do sistema de regulação gênica considerado
title_full_unstemmed Um algoritmo eficiente para o crescimento de redes sobre o grafo probabilístico completo do sistema de regulação gênica considerado
title_sort Um algoritmo eficiente para o crescimento de redes sobre o grafo probabilístico completo do sistema de regulação gênica considerado
author Lima, Leandro de Araujo
author_facet Lima, Leandro de Araujo
author_role author
dc.contributor.none.fl_str_mv Barrera, Junior
dc.contributor.author.fl_str_mv Lima, Leandro de Araujo
dc.subject.por.fl_str_mv coefficient of determination
coeficiente de determinação
crescimento de redes
informação mútua média
Mean mutual information
network growth
Probabilistic genetic networks
Redes gênicas probabilísticas
topic coefficient of determination
coeficiente de determinação
crescimento de redes
informação mútua média
Mean mutual information
network growth
Probabilistic genetic networks
Redes gênicas probabilísticas
description Sabe-se biologicamente que o nível de expressão dos genes está entre os fatores podem indicar o quanto estes estão em atividade em determinado momento. Avanços na tecnologia de microarray têm possibilitado medir os níveis de expressão de milhares de genes ao mesmo tempo. Esses dados podem ser medidos de maneira a formarem uma série temporal, que pode ser tratada estatisticamente para serem obtidas informações sobre as relações entre os genes. Já foram propostos vários modelos para tratar redes gênicas matematicamente. Esses modelos têm evoluído de forma a agregarem cada vez mais características das redes reais. Neste trabalho, será feita uma revisão de modelos discretos para redes de regulação gênica, primeiramente com as redes Booleanas, modelo determinístico, e depois as redes Booleanas probabilísticas e as redes genéticas probabilísticas, modelos que tratam o problema estocasticamente. Usando o último modelo citado, serão mostrados dois métodos para estimar o nível de predição entre os genes, coeficiente de determinação e informação mútua. Além de se estimar essas relações, foram desenvolvidas algumas técnicas para construir redes a partir de genes específicos, que são chamados sementes. Também serão apresentados dois desses métodos de crescimento de redes e, baseado neles, um terceiro método que foi desenvolvido neste trabalho. Foi criado um algoritmo que realiza o crescimento da rede mudando as sementes a cada iteração, agrupando estes genes em grupos com diferentes níveis de confiança, chamados camadas. O algoritmo também usa outros critérios para agregar novos genes à rede. Após a explanação desses métodos, será mostrado um software que, a partir de dados temporais de expressão gênica, estima as dependências entre os genes e executa o crescimento da rede em torno de genes que se deseje estudar. Também serão mostradas as melhorias feitas no programa. Ao final, serão apresentados alguns testes feitos com dados do Plasmodium falciparum, parasita causador da malária.
publishDate 2009
dc.date.none.fl_str_mv 2009-08-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45134/tde-22012010-120624/
url http://www.teses.usp.br/teses/disponiveis/45/45134/tde-22012010-120624/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258375444758528