Identificação biométrica de bovinos utilizando imagens do espelho nasal

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Gimenez, Carolina Melleiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/74/74131/tde-08092015-155222/
Resumo: Os sistemas tradicionais de identificação de gado são comprovadamente passíveis de perda, danos e possíveis operações fraudulentas justificando as pesquisas de identificadores biométricos. Este trabalho tem por objetivo verificar a possibilidade do uso de componentes principais para avaliar a divisão do espelho nasal de bovinos em classes genéricas e melhorar o reconhecimento biométrico automático dos indivíduos. O banco de dados deste trabalho foi composto pela coleta e catalogação de imagens do espelho nasal de 187 bovinos da raça Nelore ao nascimento e aos 6 meses de idade e deste grupo foram escolhidos 68 animais aleatoriamente para serem fotografados aos 12 meses de idade. Os algoritmos de processamento digital de imagens, redução de dimesionalidade e extração de característas por PCA e classificação por meio de SVM, foram implementados utilizando o software MATLAB®. Por meio da metodologia estabelecida foi possível dividir os bovinos em classes genéricas e a validação do classificador foi realizada mediante análise estatística dos seus erros e acertos. Os resultados apresentados pelo classificador SVM atingiram índices de acertos na faixa de 95,33% a 99,52%, justificando seu uso como forma automática de identificação. Estes resultados permitem concluir que a metodologia de processamento digital de imagens, a extração de características por componentes principais e o uso de máquina de vetores de suporte utilizada neste trabalho, foi capaz de verificar a individualidade dos padrões existentes no espelho nasal de bovinos.
id USP_e0b18fa8c45000a912661bf58c21ca54
oai_identifier_str oai:teses.usp.br:tde-08092015-155222
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Identificação biométrica de bovinos utilizando imagens do espelho nasalCattle biometric identification using muzzle imagesAnimal biometricAnimal science precisionBiometria animalComputational intelligenceImage processingInteligência computacionalProcessamento de imagemZootecnia de precisãoOs sistemas tradicionais de identificação de gado são comprovadamente passíveis de perda, danos e possíveis operações fraudulentas justificando as pesquisas de identificadores biométricos. Este trabalho tem por objetivo verificar a possibilidade do uso de componentes principais para avaliar a divisão do espelho nasal de bovinos em classes genéricas e melhorar o reconhecimento biométrico automático dos indivíduos. O banco de dados deste trabalho foi composto pela coleta e catalogação de imagens do espelho nasal de 187 bovinos da raça Nelore ao nascimento e aos 6 meses de idade e deste grupo foram escolhidos 68 animais aleatoriamente para serem fotografados aos 12 meses de idade. Os algoritmos de processamento digital de imagens, redução de dimesionalidade e extração de característas por PCA e classificação por meio de SVM, foram implementados utilizando o software MATLAB®. Por meio da metodologia estabelecida foi possível dividir os bovinos em classes genéricas e a validação do classificador foi realizada mediante análise estatística dos seus erros e acertos. Os resultados apresentados pelo classificador SVM atingiram índices de acertos na faixa de 95,33% a 99,52%, justificando seu uso como forma automática de identificação. Estes resultados permitem concluir que a metodologia de processamento digital de imagens, a extração de características por componentes principais e o uso de máquina de vetores de suporte utilizada neste trabalho, foi capaz de verificar a individualidade dos padrões existentes no espelho nasal de bovinos.Livestock identification in traditional systems has been proven to be susceptible to loss, damage, and possible fraudulent operations justifying the research area of biometric identification. This work aim the study of possibility for using principal components to evaluate the division of the muzzle of cattle in generic classes to improve the automatic biometric recognition of individuals. This thesis used a database composed by 187 Nelore bulls muzzle image collected from animals aged from birth to 6 months. From this group 68 animals were randomly photographed at 12 months of age. The digital image processing, feature extraction and vector support machine (SVM) were implemented using MATLAB software. The methodology used in this thesis provides an alternative to divide the cattle in generics class. The class could be available by means of statistical classifier performance The results presented by classifier achieved 95.33% to 99.52% of accuracy classification justifying its use as automatic identification. The digital signal processing, feature extraction and support vector machine methodology were able the conclusion that muzzle print image could be used as animal identification.Biblioteca Digitais de Teses e Dissertações da USPCosta, Ernane José XavierGimenez, Carolina Melleiro2015-06-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/74/74131/tde-08092015-155222/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:57Zoai:teses.usp.br:tde-08092015-155222Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Identificação biométrica de bovinos utilizando imagens do espelho nasal
Cattle biometric identification using muzzle images
title Identificação biométrica de bovinos utilizando imagens do espelho nasal
spellingShingle Identificação biométrica de bovinos utilizando imagens do espelho nasal
Gimenez, Carolina Melleiro
Animal biometric
Animal science precision
Biometria animal
Computational intelligence
Image processing
Inteligência computacional
Processamento de imagem
Zootecnia de precisão
title_short Identificação biométrica de bovinos utilizando imagens do espelho nasal
title_full Identificação biométrica de bovinos utilizando imagens do espelho nasal
title_fullStr Identificação biométrica de bovinos utilizando imagens do espelho nasal
title_full_unstemmed Identificação biométrica de bovinos utilizando imagens do espelho nasal
title_sort Identificação biométrica de bovinos utilizando imagens do espelho nasal
author Gimenez, Carolina Melleiro
author_facet Gimenez, Carolina Melleiro
author_role author
dc.contributor.none.fl_str_mv Costa, Ernane José Xavier
dc.contributor.author.fl_str_mv Gimenez, Carolina Melleiro
dc.subject.por.fl_str_mv Animal biometric
Animal science precision
Biometria animal
Computational intelligence
Image processing
Inteligência computacional
Processamento de imagem
Zootecnia de precisão
topic Animal biometric
Animal science precision
Biometria animal
Computational intelligence
Image processing
Inteligência computacional
Processamento de imagem
Zootecnia de precisão
description Os sistemas tradicionais de identificação de gado são comprovadamente passíveis de perda, danos e possíveis operações fraudulentas justificando as pesquisas de identificadores biométricos. Este trabalho tem por objetivo verificar a possibilidade do uso de componentes principais para avaliar a divisão do espelho nasal de bovinos em classes genéricas e melhorar o reconhecimento biométrico automático dos indivíduos. O banco de dados deste trabalho foi composto pela coleta e catalogação de imagens do espelho nasal de 187 bovinos da raça Nelore ao nascimento e aos 6 meses de idade e deste grupo foram escolhidos 68 animais aleatoriamente para serem fotografados aos 12 meses de idade. Os algoritmos de processamento digital de imagens, redução de dimesionalidade e extração de característas por PCA e classificação por meio de SVM, foram implementados utilizando o software MATLAB®. Por meio da metodologia estabelecida foi possível dividir os bovinos em classes genéricas e a validação do classificador foi realizada mediante análise estatística dos seus erros e acertos. Os resultados apresentados pelo classificador SVM atingiram índices de acertos na faixa de 95,33% a 99,52%, justificando seu uso como forma automática de identificação. Estes resultados permitem concluir que a metodologia de processamento digital de imagens, a extração de características por componentes principais e o uso de máquina de vetores de suporte utilizada neste trabalho, foi capaz de verificar a individualidade dos padrões existentes no espelho nasal de bovinos.
publishDate 2015
dc.date.none.fl_str_mv 2015-06-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/74/74131/tde-08092015-155222/
url http://www.teses.usp.br/teses/disponiveis/74/74131/tde-08092015-155222/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257982593662976