Mechanisms of clock gene modulation by UVA radiation and visible light in normal (Melan-a) and transformed (B16-F10) melanocytes

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Assis, Leonardo Vinícius Monteiro de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/41/41135/tde-07052019-151824/
Resumo: The skin has a system that can detect light in a fashion similar to the retina. Although its presence was initially reported almost 20 years ago, only in 2011 functional studies started to be reported. The biological clock of the skin has also been reported in the beginning of the century, but its function and relevance still remain unexplored. Thus, this Ph.D. project was designed to explore the functionality of both systems in melanocytes, and whether the disruption of these systems is associated with the development of melanoma cancer. Using in vitro, in vivo, and bioinformatics approaches, we have shown that: 1) the biological clock of malignant melanocytes is more responsive to visible light, UVA radiation, estradiol, and temperature compared to normal cells; 2) UVA radiation is detected by melanopsin (OPN4) and rhodopsin (OPN2), which triggers a cGMP related cascade that leads to immediate pigment darkening (IPD) in normal and malignant melanocytes; 3) in addition to detecting UVA radiation, OPN4 also senses thermal energy, which activates the biological clock of both normal and malignant melanocytes; 4) regarding the biological clock, we have provided several layers of evidence that proves that in melanoma a chronodisruption scenario is established compared to healthy skin and/or normal pigment cells; 5) in vivo tumor samples display a low amplitude circadian rhythm of clock gene expression and an ultradian oscillatory profile in melanin content; 6) a non-metastatic melanoma leads to a systemic chronodisruption, which we suggest that could favor the metastatic process; 7) in human melanoma, we demonstrated the role of BMAL1 as a prognostic marker and a putative marker of immune therapy success. Taken altogether, these results significantly contributed to the literature as it brought to light new and interesting targets and processes, which will be explored in future projects
id USP_e1f2d5637afea2491ae7c17a9462d086
oai_identifier_str oai:teses.usp.br:tde-07052019-151824
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Mechanisms of clock gene modulation by UVA radiation and visible light in normal (Melan-a) and transformed (B16-F10) melanocytesMecanismos de modulação de genes de relógio por radiação UVA e luz visível em melanócitos normais (Melan-a) e transformados (melanoma B16-F10)Clock genesGenes de relógioMalignant melanocyteMelanócito malignoMelanocyteMelanomaMelanomaMelanopsinMelanopsinaMus musculusRadiação ultravioleta A (UVA),Luz visívelRhodopsinRodopsinaTemperaturaTemperatureUltraviolet A (UVA) radiationVisible lightThe skin has a system that can detect light in a fashion similar to the retina. Although its presence was initially reported almost 20 years ago, only in 2011 functional studies started to be reported. The biological clock of the skin has also been reported in the beginning of the century, but its function and relevance still remain unexplored. Thus, this Ph.D. project was designed to explore the functionality of both systems in melanocytes, and whether the disruption of these systems is associated with the development of melanoma cancer. Using in vitro, in vivo, and bioinformatics approaches, we have shown that: 1) the biological clock of malignant melanocytes is more responsive to visible light, UVA radiation, estradiol, and temperature compared to normal cells; 2) UVA radiation is detected by melanopsin (OPN4) and rhodopsin (OPN2), which triggers a cGMP related cascade that leads to immediate pigment darkening (IPD) in normal and malignant melanocytes; 3) in addition to detecting UVA radiation, OPN4 also senses thermal energy, which activates the biological clock of both normal and malignant melanocytes; 4) regarding the biological clock, we have provided several layers of evidence that proves that in melanoma a chronodisruption scenario is established compared to healthy skin and/or normal pigment cells; 5) in vivo tumor samples display a low amplitude circadian rhythm of clock gene expression and an ultradian oscillatory profile in melanin content; 6) a non-metastatic melanoma leads to a systemic chronodisruption, which we suggest that could favor the metastatic process; 7) in human melanoma, we demonstrated the role of BMAL1 as a prognostic marker and a putative marker of immune therapy success. Taken altogether, these results significantly contributed to the literature as it brought to light new and interesting targets and processes, which will be explored in future projectsA pele possui um sistema que pode detectar luz de forma análoga à retina. Embora a presença deste sistema tenha sido inicialmente descrita quase há 20 anos, apenas no ano de 2011 estudos funcionais começaram a ser relatados. Sabe-se que o relógio biológico da pele também foi identificado no início do século, mas sua função e relevância ainda continuam pouco exploradas. Diante deste cenário, este projeto de doutorado foi desenhado para investigar a funcionalidade de ambos os sistemas em melanócitos e se perturbação dos mesmos estaria associada com o desenvolvimento de melanoma. Através do uso de abordagens in vitro, in vivo e de bioinformática, nós demonstramos que: 1) o relógio biológico de melanócitos malignos é mais responsivo à luz visível, radiação UVA, estradiol e temperatura comparado ao de células normais; 2) a radiação UVA é detectada por melanopsina (OPN4) e rodopsina (OPN2), que ativam uma via de sinalização dependente de GMPc, levando ao processo de pigmentação imediata (IPD) em melanócitos normais e malignos; 3) além de detecção de radiação UVA, a OPN4 também detecta energia térmica que, por sua vez, ativa o relógio biológico de melanócitos normais e malignos; 4) relativo ao relógio biológico, provamos por diferentes abordagens que, no melanoma, um cenário de cronoruputura está estabelecido em comparação a pele saudável e/ou melanócitos; 5) tumores in vivo apresentam um ritmo circadiano de baixa amplitude na expressão dos genes de relógio e um ritmo ultradiano oscilatório no conteúdo de melanina; 6) um melanoma não metastático leva a um quadro sistêmico de cronoruptura, o qual sugerimos favorecer o processo de metástase; 7) em melanoma humano, demonstramos o papel do gene BMAL11 como marcador de prognóstico e um possível indicador de sucesso de imunoterapias. Portanto, este projeto contribuiu de forma significante para a literatura científica uma vez que trouxe à luz novos e interessantes alvos terapêuticos e processos, os quais serão explorados em projetos futurosBiblioteca Digitais de Teses e Dissertações da USPCastrucci, Ana Maria de LauroAssis, Leonardo Vinícius Monteiro de2019-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/41/41135/tde-07052019-151824/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-07-04T17:50:03Zoai:teses.usp.br:tde-07052019-151824Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-07-04T17:50:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Mechanisms of clock gene modulation by UVA radiation and visible light in normal (Melan-a) and transformed (B16-F10) melanocytes
Mecanismos de modulação de genes de relógio por radiação UVA e luz visível em melanócitos normais (Melan-a) e transformados (melanoma B16-F10)
title Mechanisms of clock gene modulation by UVA radiation and visible light in normal (Melan-a) and transformed (B16-F10) melanocytes
spellingShingle Mechanisms of clock gene modulation by UVA radiation and visible light in normal (Melan-a) and transformed (B16-F10) melanocytes
Assis, Leonardo Vinícius Monteiro de
Clock genes
Genes de relógio
Malignant melanocyte
Melanócito maligno
Melanocyte
Melanoma
Melanoma
Melanopsin
Melanopsina
Mus musculus
Radiação ultravioleta A (UVA),Luz visível
Rhodopsin
Rodopsina
Temperatura
Temperature
Ultraviolet A (UVA) radiation
Visible light
title_short Mechanisms of clock gene modulation by UVA radiation and visible light in normal (Melan-a) and transformed (B16-F10) melanocytes
title_full Mechanisms of clock gene modulation by UVA radiation and visible light in normal (Melan-a) and transformed (B16-F10) melanocytes
title_fullStr Mechanisms of clock gene modulation by UVA radiation and visible light in normal (Melan-a) and transformed (B16-F10) melanocytes
title_full_unstemmed Mechanisms of clock gene modulation by UVA radiation and visible light in normal (Melan-a) and transformed (B16-F10) melanocytes
title_sort Mechanisms of clock gene modulation by UVA radiation and visible light in normal (Melan-a) and transformed (B16-F10) melanocytes
author Assis, Leonardo Vinícius Monteiro de
author_facet Assis, Leonardo Vinícius Monteiro de
author_role author
dc.contributor.none.fl_str_mv Castrucci, Ana Maria de Lauro
dc.contributor.author.fl_str_mv Assis, Leonardo Vinícius Monteiro de
dc.subject.por.fl_str_mv Clock genes
Genes de relógio
Malignant melanocyte
Melanócito maligno
Melanocyte
Melanoma
Melanoma
Melanopsin
Melanopsina
Mus musculus
Radiação ultravioleta A (UVA),Luz visível
Rhodopsin
Rodopsina
Temperatura
Temperature
Ultraviolet A (UVA) radiation
Visible light
topic Clock genes
Genes de relógio
Malignant melanocyte
Melanócito maligno
Melanocyte
Melanoma
Melanoma
Melanopsin
Melanopsina
Mus musculus
Radiação ultravioleta A (UVA),Luz visível
Rhodopsin
Rodopsina
Temperatura
Temperature
Ultraviolet A (UVA) radiation
Visible light
description The skin has a system that can detect light in a fashion similar to the retina. Although its presence was initially reported almost 20 years ago, only in 2011 functional studies started to be reported. The biological clock of the skin has also been reported in the beginning of the century, but its function and relevance still remain unexplored. Thus, this Ph.D. project was designed to explore the functionality of both systems in melanocytes, and whether the disruption of these systems is associated with the development of melanoma cancer. Using in vitro, in vivo, and bioinformatics approaches, we have shown that: 1) the biological clock of malignant melanocytes is more responsive to visible light, UVA radiation, estradiol, and temperature compared to normal cells; 2) UVA radiation is detected by melanopsin (OPN4) and rhodopsin (OPN2), which triggers a cGMP related cascade that leads to immediate pigment darkening (IPD) in normal and malignant melanocytes; 3) in addition to detecting UVA radiation, OPN4 also senses thermal energy, which activates the biological clock of both normal and malignant melanocytes; 4) regarding the biological clock, we have provided several layers of evidence that proves that in melanoma a chronodisruption scenario is established compared to healthy skin and/or normal pigment cells; 5) in vivo tumor samples display a low amplitude circadian rhythm of clock gene expression and an ultradian oscillatory profile in melanin content; 6) a non-metastatic melanoma leads to a systemic chronodisruption, which we suggest that could favor the metastatic process; 7) in human melanoma, we demonstrated the role of BMAL1 as a prognostic marker and a putative marker of immune therapy success. Taken altogether, these results significantly contributed to the literature as it brought to light new and interesting targets and processes, which will be explored in future projects
publishDate 2019
dc.date.none.fl_str_mv 2019-02-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/41/41135/tde-07052019-151824/
url http://www.teses.usp.br/teses/disponiveis/41/41135/tde-07052019-151824/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257958407208960