Stochastic models in neurobiology: from a multiunitary regime to EEG data

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Aline Duarte de Oliveira
Orientador(a): Jefferson Antonio Galves
Banca de defesa: Pablo Augusto Ferrari, Eva Locherbach, Jacob Ricardo Fraiman Maus, Claudia Domingues Vargas
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade de São Paulo
Programa de Pós-Graduação: Estatística
Departamento: Não Informado pela instituição
País: BR
Link de acesso: https://doi.org/10.11606/T.45.2016.tde-01062016-162919
Resumo: In this thesis we study three different stochastic processes describing the brain activity. The first one is a continuous time version of the stochastic chains with memory of variable length. These stochastic chains take values in the set of neurons and assign, at time t, the value of the last neuron which spiked up to time t. Moreover, we assume neurons interact through a phenomena called chemical synapses. Briefly this means that when a neuron spikes, it loses all its membrane potential and at same time changes the membrane potential of the neurons which are influenced by it. Under this approach we proved the positive recurrent of the process and presented a perfect simulation algorithm able to generate a finite sample of the process under its invariant measure. In the second model we continue considering the chemical synapses interaction and add also an interaction through electrical synapses. The last one happens duo to the presence of specific channels which allow the passage of ions along the the membrane of two neurons and, as consequence, we have a sharing of potential between the neurons. Moreover, we consider also the constant lost of potential of the neurons for the environment which push each neuron to a resting state. For this model we study the long-run behaviour of the process with a finite number of neurons, the hydrodynamic limit for the system and investigate the possible invariant distributions for the limiting process. In the last model considered here we study the brain activity measured through EEG data. We investigate the predictive coding principle which says that neural networks are able to learn the statistical regularities inherent in a stimuli and reduce redundancy by removing the predictable components of the input. To test this conjecture we propose procedures to perform statistical model selection on the EEG data in order to retrieve structural features of stochastic sources. This is done through a case study in which the EEG data is recorded under the effect of two different stochastic rhythmic sources produced by two different context tree models. We present a suitable class of stochastic processes, called here as hidden context tree models, to model EEG signals evoked by rhythmic structures. Then, we propose a consistent statistical procedure to perform statistical model selection in this class and in our case study.
id USP_e270ef8eb977a62ff0b5ff10da13b469
oai_identifier_str oai:teses.usp.br:tde-01062016-162919
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis Stochastic models in neurobiology: from a multiunitary regime to EEG data Modelos estocásticos em neurobiologia: do regime multiunitario aos dados de EEG 2015-07-17Jefferson Antonio GalvesPablo Augusto FerrariEva LocherbachJacob Ricardo Fraiman MausClaudia Domingues VargasAline Duarte de OliveiraUniversidade de São PauloEstatísticaUSPBR Cadeias de alcance variável Distribuição limite Modelos de árvore de contexto oculta Modelos de neurônio Processos markovianos determinístico por partes Seleção estatística de modelos In this thesis we study three different stochastic processes describing the brain activity. The first one is a continuous time version of the stochastic chains with memory of variable length. These stochastic chains take values in the set of neurons and assign, at time t, the value of the last neuron which spiked up to time t. Moreover, we assume neurons interact through a phenomena called chemical synapses. Briefly this means that when a neuron spikes, it loses all its membrane potential and at same time changes the membrane potential of the neurons which are influenced by it. Under this approach we proved the positive recurrent of the process and presented a perfect simulation algorithm able to generate a finite sample of the process under its invariant measure. In the second model we continue considering the chemical synapses interaction and add also an interaction through electrical synapses. The last one happens duo to the presence of specific channels which allow the passage of ions along the the membrane of two neurons and, as consequence, we have a sharing of potential between the neurons. Moreover, we consider also the constant lost of potential of the neurons for the environment which push each neuron to a resting state. For this model we study the long-run behaviour of the process with a finite number of neurons, the hydrodynamic limit for the system and investigate the possible invariant distributions for the limiting process. In the last model considered here we study the brain activity measured through EEG data. We investigate the predictive coding principle which says that neural networks are able to learn the statistical regularities inherent in a stimuli and reduce redundancy by removing the predictable components of the input. To test this conjecture we propose procedures to perform statistical model selection on the EEG data in order to retrieve structural features of stochastic sources. This is done through a case study in which the EEG data is recorded under the effect of two different stochastic rhythmic sources produced by two different context tree models. We present a suitable class of stochastic processes, called here as hidden context tree models, to model EEG signals evoked by rhythmic structures. Then, we propose a consistent statistical procedure to perform statistical model selection in this class and in our case study. Nessa tese estudamos três diferentes processos estocásticos descrevendo a atividade cerebral. O primeiro processo é uma versão a tempo contínuo das cadeias estocásticas com memória de alcance variável. Essas cadeias tomam valores no conjunto dos neurônios e assumem, no instante t, o valor do último neurônio a disparar antes de t. Além disso, assumimos que os neurônios interagem entre si através de fenômenos chamados sinapses químicas. Resumidamente isso significa que quando um neurônio dispara perde todo seu potencial de membrana e, simultaneamente, muda o potencial de membrana dos neurônios que influencia. Para esse processo estocástico provamos a recorrência positiva e apresentamos um algoritmo de simulação perfeita capaz de gerar uma amostra finita cuja distribuição é a medida invariante do processo. Na segunda classe de modelos continuamos considerando as sinapses químicas e adicionamos ainda interação por sinapses elétricas. A última acontece devido a presença de canais específicos entre dois neurônios que permitem a passagem de íons ao longo de suas membranas, como consequência, temos um compartilhamento de potencial entre os neurônios. Além disso, consideramos também a constante perda de potencial dos neurônios para o meio que age empurrando o potencial de cada neurônio a um estado de repouso. Com esses modelos estudamos o comportamento a longo prazo do processo com um número finito de neurônios, o limite hidrodinâmico desse sistema e investigamos a possível distribuição invariante para o processo limite. Na última classe considerada aqui estudamos a atividade cerebral medida através de dados de EEG. Nós investigamos o princípio do código preditivo que afirma que redes neurais são capazes de aprender as regularidades estatísticas inerentes em um estímulo e reduzir a redundância removendo as componentes previsíveis. Para testar essa conjectura, propomos um procedimento para realizar seleção estatística de modelos em dados de EEG afim de recuperar características estruturais de fontes estocásticas. Isso é feito através de um caso de estudo em que dados de EEG são coletados sob o efeito de duas fontes rítmicas estocásticas distintas produzidas por duas árvores de contextos distintas. Nós apresentamos uma classe de modelos adequada, chamada aqui de modelos de árvore de contextos oculta, para modelar sinais de EEG evocados por estruturas rítmicas. Finalmente, propomos um procedimento estatístico consistente para fazer seleção estatística de modelos nessa nova classe assim como no nosso caso de estudo. https://doi.org/10.11606/T.45.2016.tde-01062016-162919info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USP2023-12-21T18:02:19Zoai:teses.usp.br:tde-01062016-162919Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:05:35Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.en.fl_str_mv Stochastic models in neurobiology: from a multiunitary regime to EEG data
dc.title.alternative.pt.fl_str_mv Modelos estocásticos em neurobiologia: do regime multiunitario aos dados de EEG
title Stochastic models in neurobiology: from a multiunitary regime to EEG data
spellingShingle Stochastic models in neurobiology: from a multiunitary regime to EEG data
Aline Duarte de Oliveira
title_short Stochastic models in neurobiology: from a multiunitary regime to EEG data
title_full Stochastic models in neurobiology: from a multiunitary regime to EEG data
title_fullStr Stochastic models in neurobiology: from a multiunitary regime to EEG data
title_full_unstemmed Stochastic models in neurobiology: from a multiunitary regime to EEG data
title_sort Stochastic models in neurobiology: from a multiunitary regime to EEG data
author Aline Duarte de Oliveira
author_facet Aline Duarte de Oliveira
author_role author
dc.contributor.advisor1.fl_str_mv Jefferson Antonio Galves
dc.contributor.referee1.fl_str_mv Pablo Augusto Ferrari
dc.contributor.referee2.fl_str_mv Eva Locherbach
dc.contributor.referee3.fl_str_mv Jacob Ricardo Fraiman Maus
dc.contributor.referee4.fl_str_mv Claudia Domingues Vargas
dc.contributor.author.fl_str_mv Aline Duarte de Oliveira
contributor_str_mv Jefferson Antonio Galves
Pablo Augusto Ferrari
Eva Locherbach
Jacob Ricardo Fraiman Maus
Claudia Domingues Vargas
description In this thesis we study three different stochastic processes describing the brain activity. The first one is a continuous time version of the stochastic chains with memory of variable length. These stochastic chains take values in the set of neurons and assign, at time t, the value of the last neuron which spiked up to time t. Moreover, we assume neurons interact through a phenomena called chemical synapses. Briefly this means that when a neuron spikes, it loses all its membrane potential and at same time changes the membrane potential of the neurons which are influenced by it. Under this approach we proved the positive recurrent of the process and presented a perfect simulation algorithm able to generate a finite sample of the process under its invariant measure. In the second model we continue considering the chemical synapses interaction and add also an interaction through electrical synapses. The last one happens duo to the presence of specific channels which allow the passage of ions along the the membrane of two neurons and, as consequence, we have a sharing of potential between the neurons. Moreover, we consider also the constant lost of potential of the neurons for the environment which push each neuron to a resting state. For this model we study the long-run behaviour of the process with a finite number of neurons, the hydrodynamic limit for the system and investigate the possible invariant distributions for the limiting process. In the last model considered here we study the brain activity measured through EEG data. We investigate the predictive coding principle which says that neural networks are able to learn the statistical regularities inherent in a stimuli and reduce redundancy by removing the predictable components of the input. To test this conjecture we propose procedures to perform statistical model selection on the EEG data in order to retrieve structural features of stochastic sources. This is done through a case study in which the EEG data is recorded under the effect of two different stochastic rhythmic sources produced by two different context tree models. We present a suitable class of stochastic processes, called here as hidden context tree models, to model EEG signals evoked by rhythmic structures. Then, we propose a consistent statistical procedure to perform statistical model selection in this class and in our case study.
publishDate 2015
dc.date.issued.fl_str_mv 2015-07-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.11606/T.45.2016.tde-01062016-162919
url https://doi.org/10.11606/T.45.2016.tde-01062016-162919
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade de São Paulo
dc.publisher.program.fl_str_mv Estatística
dc.publisher.initials.fl_str_mv USP
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade de São Paulo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1786376472595791872