Equação de estimação generalizada e influência local para modelos de regressão beta com medidas repetidas

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Venezuela, Maria Kelly
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-10072008-210246/
Resumo: Utilizando a teoria de função de estimação linear ótima (Crowder, 1987), propomos equações de estimação generalizadas para modelos de regressão beta (Ferrari e Cribari-Neto, 2004) com medidas repetidas. Além disso, apresentamos equações de estimação generalizadas para modelos de regressão simplex baseadas nas propostas de Song e Tan (2000) e Song et al. (2004) e equações de estimação generalizadas para modelos lineares generalizados com medidas repetidas baseadas nas propostas de Artes e Jorgensen (2000) e Liang e Zeger (1986). Todas essas equações de estimação são desenvolvidas sob os enfoques da modelagem da média com homogeneidade da dispersão e da modelagem conjunta da média e da dispersão com intuito de incorporar ao modelo uma possível heterogeneidade da dispersão. Como técnicas de diagnóstico, desenvolvemos uma generalização de algumas medidas de diagnóstico quando abordamos quaisquer equações de estimação definidas tanto para modelagem do parâmetro de posição considerando a homogeneidade do parâmetro de dispersão como para modelagem conjunta dos parâmetros de posição e dispersão. Entre essas medidas, destacamos a proposta da influência local (Cook, 1986) desenvolvida para equações de estimação. Essa medida teve um bom desempenho, em simulações, para destacar corretamente pontos influentes. Por fim, realizamos aplicações a conjuntos de dados reais.
id USP_e2c35e8ec6ffbeac9bf43121278f52d6
oai_identifier_str oai:teses.usp.br:tde-10072008-210246
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Equação de estimação generalizada e influência local para modelos de regressão beta com medidas repetidasGeneralized estimating equation and local influence to beta regression models with repeated measuresbeta distributiondados longitudinaisdistribuição betaequação de estimação generalizadageneralized estimating equationinfluência locallocal influencelongitudinal datamedidas repetidasrepeated measureUtilizando a teoria de função de estimação linear ótima (Crowder, 1987), propomos equações de estimação generalizadas para modelos de regressão beta (Ferrari e Cribari-Neto, 2004) com medidas repetidas. Além disso, apresentamos equações de estimação generalizadas para modelos de regressão simplex baseadas nas propostas de Song e Tan (2000) e Song et al. (2004) e equações de estimação generalizadas para modelos lineares generalizados com medidas repetidas baseadas nas propostas de Artes e Jorgensen (2000) e Liang e Zeger (1986). Todas essas equações de estimação são desenvolvidas sob os enfoques da modelagem da média com homogeneidade da dispersão e da modelagem conjunta da média e da dispersão com intuito de incorporar ao modelo uma possível heterogeneidade da dispersão. Como técnicas de diagnóstico, desenvolvemos uma generalização de algumas medidas de diagnóstico quando abordamos quaisquer equações de estimação definidas tanto para modelagem do parâmetro de posição considerando a homogeneidade do parâmetro de dispersão como para modelagem conjunta dos parâmetros de posição e dispersão. Entre essas medidas, destacamos a proposta da influência local (Cook, 1986) desenvolvida para equações de estimação. Essa medida teve um bom desempenho, em simulações, para destacar corretamente pontos influentes. Por fim, realizamos aplicações a conjuntos de dados reais.Based on the concept of optimum linear estimating equation (Crowder, 1987), we develop generalized estimating equation (GEE) to analyze longitudinal data considering marginal beta regression models (Ferrari and Cribari-Neto, 2004). The GEEs are also presented to marginal simplex models for longitudinal continuous proportional data proposed by Song and Tan (2000) and Song et al. (2004) and to generalized linear models for longitudinal data based on the proposes of Artes and J$\\phi$rgensen (2000) and Liang and Zeger (1986). All of them are developed focusing the assumption of homogeneous dispersion and with varying dispersion. For the diagnostic techniques, we generalize some diagnostic measures for estimating equations to model the position parameter considering an homogeneous dispersion parameter and for joint modelling of position and dispersion parameters to take in account a possible heterogeneous dispersion. Among these measures, we point out the local influence (Cook, 1986) developed to estimating equations. This measure can correctly show influential observations in simulation study. Finally, the theory is applied to real data sets.Biblioteca Digitais de Teses e Dissertações da USPBotter, Denise AparecidaSandoval, Monica CarneiroVenezuela, Maria Kelly2008-03-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-10072008-210246/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-15T14:37:03Zoai:teses.usp.br:tde-10072008-210246Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-15T14:37:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Equação de estimação generalizada e influência local para modelos de regressão beta com medidas repetidas
Generalized estimating equation and local influence to beta regression models with repeated measures
title Equação de estimação generalizada e influência local para modelos de regressão beta com medidas repetidas
spellingShingle Equação de estimação generalizada e influência local para modelos de regressão beta com medidas repetidas
Venezuela, Maria Kelly
beta distribution
dados longitudinais
distribuição beta
equação de estimação generalizada
generalized estimating equation
influência local
local influence
longitudinal data
medidas repetidas
repeated measure
title_short Equação de estimação generalizada e influência local para modelos de regressão beta com medidas repetidas
title_full Equação de estimação generalizada e influência local para modelos de regressão beta com medidas repetidas
title_fullStr Equação de estimação generalizada e influência local para modelos de regressão beta com medidas repetidas
title_full_unstemmed Equação de estimação generalizada e influência local para modelos de regressão beta com medidas repetidas
title_sort Equação de estimação generalizada e influência local para modelos de regressão beta com medidas repetidas
author Venezuela, Maria Kelly
author_facet Venezuela, Maria Kelly
author_role author
dc.contributor.none.fl_str_mv Botter, Denise Aparecida
Sandoval, Monica Carneiro
dc.contributor.author.fl_str_mv Venezuela, Maria Kelly
dc.subject.por.fl_str_mv beta distribution
dados longitudinais
distribuição beta
equação de estimação generalizada
generalized estimating equation
influência local
local influence
longitudinal data
medidas repetidas
repeated measure
topic beta distribution
dados longitudinais
distribuição beta
equação de estimação generalizada
generalized estimating equation
influência local
local influence
longitudinal data
medidas repetidas
repeated measure
description Utilizando a teoria de função de estimação linear ótima (Crowder, 1987), propomos equações de estimação generalizadas para modelos de regressão beta (Ferrari e Cribari-Neto, 2004) com medidas repetidas. Além disso, apresentamos equações de estimação generalizadas para modelos de regressão simplex baseadas nas propostas de Song e Tan (2000) e Song et al. (2004) e equações de estimação generalizadas para modelos lineares generalizados com medidas repetidas baseadas nas propostas de Artes e Jorgensen (2000) e Liang e Zeger (1986). Todas essas equações de estimação são desenvolvidas sob os enfoques da modelagem da média com homogeneidade da dispersão e da modelagem conjunta da média e da dispersão com intuito de incorporar ao modelo uma possível heterogeneidade da dispersão. Como técnicas de diagnóstico, desenvolvemos uma generalização de algumas medidas de diagnóstico quando abordamos quaisquer equações de estimação definidas tanto para modelagem do parâmetro de posição considerando a homogeneidade do parâmetro de dispersão como para modelagem conjunta dos parâmetros de posição e dispersão. Entre essas medidas, destacamos a proposta da influência local (Cook, 1986) desenvolvida para equações de estimação. Essa medida teve um bom desempenho, em simulações, para destacar corretamente pontos influentes. Por fim, realizamos aplicações a conjuntos de dados reais.
publishDate 2008
dc.date.none.fl_str_mv 2008-03-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45133/tde-10072008-210246/
url http://www.teses.usp.br/teses/disponiveis/45/45133/tde-10072008-210246/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258077426876416