Avaliação de Discriminação em Aprendizagem de Máquina usando Técnicas de Interpretabilidade.
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/3/3141/tde-31052021-114333/ |
Resumo: | Preconceitos presentes na sociedade podem criar vieses em modelos aprendidos a partir de dados. Para avaliar a existência de viés, alguns pesquisadores propõem o uso de definições de \"justiça\", enquanto outros usam técnicas de interpretabilidade. Porém, parece não existir nenhum estudo que compara as medidas de justiça (através de várias definições de justiça) e os resultados de interpretabilidade (através de várias noções de interpretabilidade). Nesse trabalho foi proposto metodologias para examinar e comparar essas técnicas. A ideia ´e avaliar como as medidas de justiça e o resultado de interpretabilidade variam em um modelo com viés e em outro sem viés. O foco foi no uso do SHAP (SHapley Additive exPlanations) como técnica de interpretabilidade, que usa conceito da teoria dos jogos cooperativos para calcular a contribuição de cada atributo em uma previsão gerada pelo modelo; foi apresentado resultados com alguns conjuntos de dados propensos a injustiça. Com os experimentos foi identificado qual a medida de justiça tem relação alta e baixa com o resultado do SHAP, o que auxiliaria a decidir quando é recomendável usar o SHAP como técnica de interpretabilidade ou quando é melhor usar outra técnica. |
| id |
USP_e5f69fd6050bc1360e8a1c5d8c608086 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-31052021-114333 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Avaliação de Discriminação em Aprendizagem de Máquina usando Técnicas de Interpretabilidade.Measuring fairness in machine learning through interpretability techniques.DiscriminaçãoFairnessFeature importanceInteligência artificialInterpretabilitySHAPShapleyTeoria dos jogosPreconceitos presentes na sociedade podem criar vieses em modelos aprendidos a partir de dados. Para avaliar a existência de viés, alguns pesquisadores propõem o uso de definições de \"justiça\", enquanto outros usam técnicas de interpretabilidade. Porém, parece não existir nenhum estudo que compara as medidas de justiça (através de várias definições de justiça) e os resultados de interpretabilidade (através de várias noções de interpretabilidade). Nesse trabalho foi proposto metodologias para examinar e comparar essas técnicas. A ideia ´e avaliar como as medidas de justiça e o resultado de interpretabilidade variam em um modelo com viés e em outro sem viés. O foco foi no uso do SHAP (SHapley Additive exPlanations) como técnica de interpretabilidade, que usa conceito da teoria dos jogos cooperativos para calcular a contribuição de cada atributo em uma previsão gerada pelo modelo; foi apresentado resultados com alguns conjuntos de dados propensos a injustiça. Com os experimentos foi identificado qual a medida de justiça tem relação alta e baixa com o resultado do SHAP, o que auxiliaria a decidir quando é recomendável usar o SHAP como técnica de interpretabilidade ou quando é melhor usar outra técnica.Prejudices present in society and in data can introduce biases in a model. In order to evaluate the presence of bias in machine learning, some proposals use fairness measures, while others use interpretability techniques. However, there seems to be no study that compares fairness measures (across various definitions of fairness) and interpretability results (across various notions of interpretability). In this work, we propose ways to evaluate and compare such notions. The idea is to evaluate how fairness measures and interpretability results vary in a model with bias and another one without bias. We focus in particular on SHAP (SHapley Additive exPlanations) as the interpretability technique, which uses cooperative game theory concepts to calculate each feature contribution in a forecast generated by the model; we present results for a number of unfairness-prone datasets. The experiments allow us to identify the fairness measures with high and low connection with SHAP results, which would help decide when it is recommended to use SHAP as an interpretability technique or when it is better to use another technique.Biblioteca Digitais de Teses e Dissertações da USPCozman, Fabio GagliardiCesaro, Juliana2020-11-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3141/tde-31052021-114333/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T12:45:42Zoai:teses.usp.br:tde-31052021-114333Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:45:42Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Avaliação de Discriminação em Aprendizagem de Máquina usando Técnicas de Interpretabilidade. Measuring fairness in machine learning through interpretability techniques. |
| title |
Avaliação de Discriminação em Aprendizagem de Máquina usando Técnicas de Interpretabilidade. |
| spellingShingle |
Avaliação de Discriminação em Aprendizagem de Máquina usando Técnicas de Interpretabilidade. Cesaro, Juliana Discriminação Fairness Feature importance Inteligência artificial Interpretability SHAP Shapley Teoria dos jogos |
| title_short |
Avaliação de Discriminação em Aprendizagem de Máquina usando Técnicas de Interpretabilidade. |
| title_full |
Avaliação de Discriminação em Aprendizagem de Máquina usando Técnicas de Interpretabilidade. |
| title_fullStr |
Avaliação de Discriminação em Aprendizagem de Máquina usando Técnicas de Interpretabilidade. |
| title_full_unstemmed |
Avaliação de Discriminação em Aprendizagem de Máquina usando Técnicas de Interpretabilidade. |
| title_sort |
Avaliação de Discriminação em Aprendizagem de Máquina usando Técnicas de Interpretabilidade. |
| author |
Cesaro, Juliana |
| author_facet |
Cesaro, Juliana |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Cozman, Fabio Gagliardi |
| dc.contributor.author.fl_str_mv |
Cesaro, Juliana |
| dc.subject.por.fl_str_mv |
Discriminação Fairness Feature importance Inteligência artificial Interpretability SHAP Shapley Teoria dos jogos |
| topic |
Discriminação Fairness Feature importance Inteligência artificial Interpretability SHAP Shapley Teoria dos jogos |
| description |
Preconceitos presentes na sociedade podem criar vieses em modelos aprendidos a partir de dados. Para avaliar a existência de viés, alguns pesquisadores propõem o uso de definições de \"justiça\", enquanto outros usam técnicas de interpretabilidade. Porém, parece não existir nenhum estudo que compara as medidas de justiça (através de várias definições de justiça) e os resultados de interpretabilidade (através de várias noções de interpretabilidade). Nesse trabalho foi proposto metodologias para examinar e comparar essas técnicas. A ideia ´e avaliar como as medidas de justiça e o resultado de interpretabilidade variam em um modelo com viés e em outro sem viés. O foco foi no uso do SHAP (SHapley Additive exPlanations) como técnica de interpretabilidade, que usa conceito da teoria dos jogos cooperativos para calcular a contribuição de cada atributo em uma previsão gerada pelo modelo; foi apresentado resultados com alguns conjuntos de dados propensos a injustiça. Com os experimentos foi identificado qual a medida de justiça tem relação alta e baixa com o resultado do SHAP, o que auxiliaria a decidir quando é recomendável usar o SHAP como técnica de interpretabilidade ou quando é melhor usar outra técnica. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-11-05 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-31052021-114333/ |
| url |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-31052021-114333/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1818279245577715712 |