Application of Real-time Optimization with Persistent Parameter Adaptation (ROPA) to processes using online parameter estimation.

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Carneiro, Andreia Abadia Borges
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3137/tde-21012021-105517/
Resumo: Recently, there has been an increasing growth in the optimization processes in the industrial area. The reduction of costs, improvement in the quality of final products and minimization of the environmental risks are important issues that companies must take into consideration. Thus, the development of optimization tools to efficiently identify problems has become suitable. In this context, real-time optimization (RTO) methodology is widely used in industrial area to optimize a plant economically. This is a well-established approach to create a link between a regulatory control and the economical optimization of a process under control. There are several RTO methods which can be used in the optimization cycle. The standard RTO method, called Model Parameter Adaptation (MPA), is one of the most applied in industry. Albeit a good method, there are some problems related to the MPA as well as other RTO methods, such as the use of steady-state (SS) data to update SS models to a dynamic plant, the delay in the detection of the SS condition in the system to start the optimization cycle, and the difficulty to model a complete unit since those methods require it. Real-time Optimization with Persistent Adaptation (ROPA) is a new methodology which tackles those issues. ROPA uses transient data to update the model aiming to optimize the plant. Thus, there is no need to wait for the SS condition because the dynamic plant is not updated with stationary information. Aiming to verify the advantages of this new method, this work presents the results of the ROPA application to two chemical processes. All simulations are performed using MATLAB, the dynamic model and the sensitivity equations are solved by SundialsTB. For the first case study, the Williams-Otto reactor, random and deterministic disturbances are considered in the system in order to simulate a real plant. In addition, the Extended Kalman filter (EKF) is used as the online estimator to obtain the estimated parameters and states in the current time. Regarding the Williams-Otto reactor study, the state estimate results show that the filter works consistently, and the state covariance matrix is satisfactorily tuned. Additionally, the parameter estimation shows that ROPA is able to respond to the disturbances occurrence reproducing the actual plant parameter profile. ROPA runs the economic optimization continuously independently of the plant condition. A Monte Carlo analysis of benefits in applying ROPA method in the RTO cycle shows that the method is suitable to track the plant optimum. Regarding the second case study, the Propylene Chlorination process simulated in a commercial dynamic simulator is optimized by an external ROPA implemented in MATLAB. In this case, ROPA can also reach the stationary optimum, and the filter works properly. However, the MPA and ROPA results are similar because the process is in a gas-phase with fast dynamics. Even in this situation, it can be seen that MPA still has the steady-state delay issue. .
id USP_e84abe50744f83fe4f36c0206b3860c0
oai_identifier_str oai:teses.usp.br:tde-21012021-105517
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Application of Real-time Optimization with Persistent Parameter Adaptation (ROPA) to processes using online parameter estimation.Aplicação de otimização em tempo real com adaptação contínua de parâmetros usando estimação de parâmetros em linha.Dados transientesDynamic plantEstimativa em linhaExtended Kalman Filter (EKF)Filtros de KalmanOnline estimationOtimização em Tempo Real (RTO)Planta dinâmicaReal-time Optimization (RTO)Transient dataRecently, there has been an increasing growth in the optimization processes in the industrial area. The reduction of costs, improvement in the quality of final products and minimization of the environmental risks are important issues that companies must take into consideration. Thus, the development of optimization tools to efficiently identify problems has become suitable. In this context, real-time optimization (RTO) methodology is widely used in industrial area to optimize a plant economically. This is a well-established approach to create a link between a regulatory control and the economical optimization of a process under control. There are several RTO methods which can be used in the optimization cycle. The standard RTO method, called Model Parameter Adaptation (MPA), is one of the most applied in industry. Albeit a good method, there are some problems related to the MPA as well as other RTO methods, such as the use of steady-state (SS) data to update SS models to a dynamic plant, the delay in the detection of the SS condition in the system to start the optimization cycle, and the difficulty to model a complete unit since those methods require it. Real-time Optimization with Persistent Adaptation (ROPA) is a new methodology which tackles those issues. ROPA uses transient data to update the model aiming to optimize the plant. Thus, there is no need to wait for the SS condition because the dynamic plant is not updated with stationary information. Aiming to verify the advantages of this new method, this work presents the results of the ROPA application to two chemical processes. All simulations are performed using MATLAB, the dynamic model and the sensitivity equations are solved by SundialsTB. For the first case study, the Williams-Otto reactor, random and deterministic disturbances are considered in the system in order to simulate a real plant. In addition, the Extended Kalman filter (EKF) is used as the online estimator to obtain the estimated parameters and states in the current time. Regarding the Williams-Otto reactor study, the state estimate results show that the filter works consistently, and the state covariance matrix is satisfactorily tuned. Additionally, the parameter estimation shows that ROPA is able to respond to the disturbances occurrence reproducing the actual plant parameter profile. ROPA runs the economic optimization continuously independently of the plant condition. A Monte Carlo analysis of benefits in applying ROPA method in the RTO cycle shows that the method is suitable to track the plant optimum. Regarding the second case study, the Propylene Chlorination process simulated in a commercial dynamic simulator is optimized by an external ROPA implemented in MATLAB. In this case, ROPA can also reach the stationary optimum, and the filter works properly. However, the MPA and ROPA results are similar because the process is in a gas-phase with fast dynamics. Even in this situation, it can be seen that MPA still has the steady-state delay issue. .Recentemente, houve um crescimento crescente nos processos de otimização na área industrial. A redução de custos, a melhoria na qualidade dos produtos finais e a minimização dos riscos ambientais são questões importantes que as empresas devem se preocupar. Assim, o desenvolvimento de ferramentas de otimização tornou-se adequado. Neste contexto, a metodologia de otimização em tempo real (RTO) é amplamente utilizada na indústria para otimizar uma planta economicamente. Essa é uma abordagem bem estabelecida para criar um vínculo entre um controle regulatório e a otimização econômica de um processo. O método de RTO clássico, também chamado de Model Parameter Adaptation (MPA), é um dos mais aplicados na indústria. Apesar de ser um bom método, existem alguns problemas relacionados à metodologia MPA e aos outros métodos de RTO, como o uso de dados de estado estacionário (EE) para atualizar uma planta dinâmica, a demora na detecção da condição de EE no sistema para iniciar o ciclo de otimização, e a dificuldade de modelar uma unidade completa, uma vez que estes métodos exigem isso. A otimização em tempo real com adaptação persistente (ROPA) é uma nova metodologia que aborda esses problemas. O método utiliza dados transientes para atualizar o modelo visando otimizar a planta. Assim, não há necessidade de esperar pela condição de EE, e a planta dinâmica não é atualizada com informações estacionárias. Com o objetivo de verificar as vantagens deste novo método, este trabalho apresenta os resultados da aplicação do ROPA em dois processos químicos. Todas as simulações são realizadas no software MATLAB, e o modelo dinâmico e as equações de sensibilidade são resolvidos pelo SundialsTB. No primeiro Estudo de Caso, o reator de Williams-Otto, perturbações randômicas e determinísticas são consideradas no sistema para simular uma planta real. O filtro de Kalman Estendido (EKF) é usado como o estimador online para obter os parâmetros e estados estimados no tempo atual. Em relação ao estudo do reator de Williams Otto, os resultados da estimativa dos estados mostram que o filtro funciona de forma consistente e a matriz de covariância de estado é ajustada satisfatoriamente. Além disso, a estimativa de parâmetros mostra que o método ROPA é capaz de responder à ocorrência de distúrbios reproduzindo o perfil real dos parâmetros da planta. O ROPA executa a otimização econômica continuamente independentemente da condição da planta. Uma análise Monte Carlo dos benefícios na aplicação do método ROPA no ciclo RTO mostra que o método é adequado para obter o ótimo da planta. No segundo Estudo de Caso, o processo é simulado em um simulador dinâmico comercial e é otimizado por um ROPA externo implementado no MATLAB. O ROPA também pode atingir o ótimo estacionário da planta e o filtro funciona corretamente. No entanto, os resultados MPA e ROPA são semelhantes porque o processo está na fase gasosa com uma dinâmica rápida. Mesmo nesta situação, pode-se ver que o MPA ainda lida com o problema de atraso no estado estacionário.Biblioteca Digitais de Teses e Dissertações da USPRoux, Galo Antonio Carrillo LeCarneiro, Andreia Abadia Borges2020-04-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3137/tde-21012021-105517/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-02-01T15:45:02Zoai:teses.usp.br:tde-21012021-105517Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-02-01T15:45:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Application of Real-time Optimization with Persistent Parameter Adaptation (ROPA) to processes using online parameter estimation.
Aplicação de otimização em tempo real com adaptação contínua de parâmetros usando estimação de parâmetros em linha.
title Application of Real-time Optimization with Persistent Parameter Adaptation (ROPA) to processes using online parameter estimation.
spellingShingle Application of Real-time Optimization with Persistent Parameter Adaptation (ROPA) to processes using online parameter estimation.
Carneiro, Andreia Abadia Borges
Dados transientes
Dynamic plant
Estimativa em linha
Extended Kalman Filter (EKF)
Filtros de Kalman
Online estimation
Otimização em Tempo Real (RTO)
Planta dinâmica
Real-time Optimization (RTO)
Transient data
title_short Application of Real-time Optimization with Persistent Parameter Adaptation (ROPA) to processes using online parameter estimation.
title_full Application of Real-time Optimization with Persistent Parameter Adaptation (ROPA) to processes using online parameter estimation.
title_fullStr Application of Real-time Optimization with Persistent Parameter Adaptation (ROPA) to processes using online parameter estimation.
title_full_unstemmed Application of Real-time Optimization with Persistent Parameter Adaptation (ROPA) to processes using online parameter estimation.
title_sort Application of Real-time Optimization with Persistent Parameter Adaptation (ROPA) to processes using online parameter estimation.
author Carneiro, Andreia Abadia Borges
author_facet Carneiro, Andreia Abadia Borges
author_role author
dc.contributor.none.fl_str_mv Roux, Galo Antonio Carrillo Le
dc.contributor.author.fl_str_mv Carneiro, Andreia Abadia Borges
dc.subject.por.fl_str_mv Dados transientes
Dynamic plant
Estimativa em linha
Extended Kalman Filter (EKF)
Filtros de Kalman
Online estimation
Otimização em Tempo Real (RTO)
Planta dinâmica
Real-time Optimization (RTO)
Transient data
topic Dados transientes
Dynamic plant
Estimativa em linha
Extended Kalman Filter (EKF)
Filtros de Kalman
Online estimation
Otimização em Tempo Real (RTO)
Planta dinâmica
Real-time Optimization (RTO)
Transient data
description Recently, there has been an increasing growth in the optimization processes in the industrial area. The reduction of costs, improvement in the quality of final products and minimization of the environmental risks are important issues that companies must take into consideration. Thus, the development of optimization tools to efficiently identify problems has become suitable. In this context, real-time optimization (RTO) methodology is widely used in industrial area to optimize a plant economically. This is a well-established approach to create a link between a regulatory control and the economical optimization of a process under control. There are several RTO methods which can be used in the optimization cycle. The standard RTO method, called Model Parameter Adaptation (MPA), is one of the most applied in industry. Albeit a good method, there are some problems related to the MPA as well as other RTO methods, such as the use of steady-state (SS) data to update SS models to a dynamic plant, the delay in the detection of the SS condition in the system to start the optimization cycle, and the difficulty to model a complete unit since those methods require it. Real-time Optimization with Persistent Adaptation (ROPA) is a new methodology which tackles those issues. ROPA uses transient data to update the model aiming to optimize the plant. Thus, there is no need to wait for the SS condition because the dynamic plant is not updated with stationary information. Aiming to verify the advantages of this new method, this work presents the results of the ROPA application to two chemical processes. All simulations are performed using MATLAB, the dynamic model and the sensitivity equations are solved by SundialsTB. For the first case study, the Williams-Otto reactor, random and deterministic disturbances are considered in the system in order to simulate a real plant. In addition, the Extended Kalman filter (EKF) is used as the online estimator to obtain the estimated parameters and states in the current time. Regarding the Williams-Otto reactor study, the state estimate results show that the filter works consistently, and the state covariance matrix is satisfactorily tuned. Additionally, the parameter estimation shows that ROPA is able to respond to the disturbances occurrence reproducing the actual plant parameter profile. ROPA runs the economic optimization continuously independently of the plant condition. A Monte Carlo analysis of benefits in applying ROPA method in the RTO cycle shows that the method is suitable to track the plant optimum. Regarding the second case study, the Propylene Chlorination process simulated in a commercial dynamic simulator is optimized by an external ROPA implemented in MATLAB. In this case, ROPA can also reach the stationary optimum, and the filter works properly. However, the MPA and ROPA results are similar because the process is in a gas-phase with fast dynamics. Even in this situation, it can be seen that MPA still has the steady-state delay issue. .
publishDate 2020
dc.date.none.fl_str_mv 2020-04-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3137/tde-21012021-105517/
url https://www.teses.usp.br/teses/disponiveis/3/3137/tde-21012021-105517/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258354487918592