Agrupamento semântico de aspectos para mineração de opinião
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-31072018-170236/ |
Resumo: | Com o rápido crescimento do volume de informações opinativas na web, extrair e sintetizar conteúdo subjetivo e relevante da rede é uma tarefa prioritária e que perpassa vários domínios da sociedade: político, social, econômico, etc. A organização semântica desse tipo de conteúdo, é uma tarefa importante no contexto atual, pois possibilita um melhor aproveitamento desses dados, além de benefícios diretos tanto para consumidores quanto para organizações privadas e governamentais. A área responsável pela extração, processamento e apresentação de conteúdo subjetivo é a mineração de opinião, também chamada de análise de sentimentos. A mineração de opinião é dividida em níveis de granularidade de análise: o nível do documento, o nível da sentença e o nível de aspectos. Neste trabalho, atuou-se no nível mais fino de granularidade, a mineração de opinião baseada em aspectos, que consiste de três principais tarefas: o reconhecimento e agrupamento de aspectos, a extração de polaridade e a sumarização. Aspectos são propriedades do alvo da opinião e podem ser implícitos e explícitos. Reconhecer e agrupar aspectos são tarefas críticas para mineração de opinião, no entanto, também são desafiadoras. Por exemplo, em textos opinativos, usuários utilizam termos distintos para se referir a uma mesma propriedade do objeto. Portanto, neste trabalho, atuamos no problema de agrupamento de aspectos para mineração de opinião. Para resolução deste problema, optamos por uma abordagem baseada em conhecimento linguístico. Investigou-se os principais fenômenos intrínsecos e extrínsecos em textos opinativos a fim de encontrar padrões linguísticos e insumos acionáveis para proposição de métodos automáticos de agrupamento de aspectos correlatos para mineração de opinião. Nós propomos, implementamos e comparamos seis métodos automáticos baseados em conhecimento linguístico para a tarefa de agrupamento de aspectos explícitos e implícitos. Um método inédito foi proposto para essa tarefa que superou os demais métodos implementados, especialmente o método baseado em léxico de sinônimos (baseline) e o modelo estatístico com base em word embeddings. O método proposto também não é dependente de uma língua ou de um domínio, no entanto, focamos no Português do Brasil e no domínio de produtos da web. |
| id |
USP_e8873bb6c52c5bf7860a914609277e56 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-31072018-170236 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Agrupamento semântico de aspectos para mineração de opiniãoSemantic clustering of aspects for opinion miningAspect-based opinion miningMineração de opinião baseada em aspectosNatural Language ProcessingProcessamento de Linguagem NaturalCom o rápido crescimento do volume de informações opinativas na web, extrair e sintetizar conteúdo subjetivo e relevante da rede é uma tarefa prioritária e que perpassa vários domínios da sociedade: político, social, econômico, etc. A organização semântica desse tipo de conteúdo, é uma tarefa importante no contexto atual, pois possibilita um melhor aproveitamento desses dados, além de benefícios diretos tanto para consumidores quanto para organizações privadas e governamentais. A área responsável pela extração, processamento e apresentação de conteúdo subjetivo é a mineração de opinião, também chamada de análise de sentimentos. A mineração de opinião é dividida em níveis de granularidade de análise: o nível do documento, o nível da sentença e o nível de aspectos. Neste trabalho, atuou-se no nível mais fino de granularidade, a mineração de opinião baseada em aspectos, que consiste de três principais tarefas: o reconhecimento e agrupamento de aspectos, a extração de polaridade e a sumarização. Aspectos são propriedades do alvo da opinião e podem ser implícitos e explícitos. Reconhecer e agrupar aspectos são tarefas críticas para mineração de opinião, no entanto, também são desafiadoras. Por exemplo, em textos opinativos, usuários utilizam termos distintos para se referir a uma mesma propriedade do objeto. Portanto, neste trabalho, atuamos no problema de agrupamento de aspectos para mineração de opinião. Para resolução deste problema, optamos por uma abordagem baseada em conhecimento linguístico. Investigou-se os principais fenômenos intrínsecos e extrínsecos em textos opinativos a fim de encontrar padrões linguísticos e insumos acionáveis para proposição de métodos automáticos de agrupamento de aspectos correlatos para mineração de opinião. Nós propomos, implementamos e comparamos seis métodos automáticos baseados em conhecimento linguístico para a tarefa de agrupamento de aspectos explícitos e implícitos. Um método inédito foi proposto para essa tarefa que superou os demais métodos implementados, especialmente o método baseado em léxico de sinônimos (baseline) e o modelo estatístico com base em word embeddings. O método proposto também não é dependente de uma língua ou de um domínio, no entanto, focamos no Português do Brasil e no domínio de produtos da web.With the growing volume of opinion information on the web, extracting and synthesizing subjective and relevant content from the web has to be shown a priority task that passes through different society domains, such as political, social, economical, etc. The semantic organization of this type of content is very important nowadays since it allows a better use of those data, as well as it benefits customers and both private and governmental organizations. The area responsible for extracting, processing and presenting the subjective content is opinion mining, also known as sentiment analysis. Opinion mining is divided into granularity levels: document, sentence and aspect levels. In this research, the deepest level of granularity was studied, the opinion mining based on aspects, which consists of three main tasks: aspect recognition and clustering, polarity extracting, and summarization. Aspects are the properties and parts of the evaluated object and it may be implicit or explicit. Recognizing and clustering aspects are critical tasks for opinion mining; nonetheless, they are also challenging. For example, in reviews, users use distinct terms to refer to the same object property. Therefore, in this work, the aspect clustering task was the focus. To solve this problem, a linguistic approach was chosen. The main intrinsic and extrinsic phenomena in reviews were investigated in order to find linguistic standards and actionable inputs, so it was possible to propose automatic methods of aspect clustering for opinion mining. In addition, six automatic linguistic-based methods for explicit and implicit aspect clustering were proposed, implemented and compared. Besides that, a new method was suggested for this task, which surpassed the other implemented methods, specially the synonym lexicon-based method (baseline) and a word embeddings approach. This suggested method is also language and domain independent and, in this work, was tailored for Brazilian Portuguese and products domain.Biblioteca Digitais de Teses e Dissertações da USPPardo, Thiago Alexandre SalgueiroVargas, Francielle Alves2017-11-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-31072018-170236/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-10-03T01:45:28Zoai:teses.usp.br:tde-31072018-170236Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-10-03T01:45:28Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Agrupamento semântico de aspectos para mineração de opinião Semantic clustering of aspects for opinion mining |
| title |
Agrupamento semântico de aspectos para mineração de opinião |
| spellingShingle |
Agrupamento semântico de aspectos para mineração de opinião Vargas, Francielle Alves Aspect-based opinion mining Mineração de opinião baseada em aspectos Natural Language Processing Processamento de Linguagem Natural |
| title_short |
Agrupamento semântico de aspectos para mineração de opinião |
| title_full |
Agrupamento semântico de aspectos para mineração de opinião |
| title_fullStr |
Agrupamento semântico de aspectos para mineração de opinião |
| title_full_unstemmed |
Agrupamento semântico de aspectos para mineração de opinião |
| title_sort |
Agrupamento semântico de aspectos para mineração de opinião |
| author |
Vargas, Francielle Alves |
| author_facet |
Vargas, Francielle Alves |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Pardo, Thiago Alexandre Salgueiro |
| dc.contributor.author.fl_str_mv |
Vargas, Francielle Alves |
| dc.subject.por.fl_str_mv |
Aspect-based opinion mining Mineração de opinião baseada em aspectos Natural Language Processing Processamento de Linguagem Natural |
| topic |
Aspect-based opinion mining Mineração de opinião baseada em aspectos Natural Language Processing Processamento de Linguagem Natural |
| description |
Com o rápido crescimento do volume de informações opinativas na web, extrair e sintetizar conteúdo subjetivo e relevante da rede é uma tarefa prioritária e que perpassa vários domínios da sociedade: político, social, econômico, etc. A organização semântica desse tipo de conteúdo, é uma tarefa importante no contexto atual, pois possibilita um melhor aproveitamento desses dados, além de benefícios diretos tanto para consumidores quanto para organizações privadas e governamentais. A área responsável pela extração, processamento e apresentação de conteúdo subjetivo é a mineração de opinião, também chamada de análise de sentimentos. A mineração de opinião é dividida em níveis de granularidade de análise: o nível do documento, o nível da sentença e o nível de aspectos. Neste trabalho, atuou-se no nível mais fino de granularidade, a mineração de opinião baseada em aspectos, que consiste de três principais tarefas: o reconhecimento e agrupamento de aspectos, a extração de polaridade e a sumarização. Aspectos são propriedades do alvo da opinião e podem ser implícitos e explícitos. Reconhecer e agrupar aspectos são tarefas críticas para mineração de opinião, no entanto, também são desafiadoras. Por exemplo, em textos opinativos, usuários utilizam termos distintos para se referir a uma mesma propriedade do objeto. Portanto, neste trabalho, atuamos no problema de agrupamento de aspectos para mineração de opinião. Para resolução deste problema, optamos por uma abordagem baseada em conhecimento linguístico. Investigou-se os principais fenômenos intrínsecos e extrínsecos em textos opinativos a fim de encontrar padrões linguísticos e insumos acionáveis para proposição de métodos automáticos de agrupamento de aspectos correlatos para mineração de opinião. Nós propomos, implementamos e comparamos seis métodos automáticos baseados em conhecimento linguístico para a tarefa de agrupamento de aspectos explícitos e implícitos. Um método inédito foi proposto para essa tarefa que superou os demais métodos implementados, especialmente o método baseado em léxico de sinônimos (baseline) e o modelo estatístico com base em word embeddings. O método proposto também não é dependente de uma língua ou de um domínio, no entanto, focamos no Português do Brasil e no domínio de produtos da web. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-11-29 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-31072018-170236/ |
| url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-31072018-170236/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258604347850752 |