Incremental attribute computation and image manipulation using morphological trees

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Silva, Dênnis José da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-02082025-161749/
Resumo: Morphological trees are image representations that can be used in a wide range of applications from medical imaging to digital photography. Morphological trees are interesting representations because they hierarchically encode the connected components (with and without their holes filled) according to their subset relationship. In this way, we can analyse and process connected regions of the images based on the hierarchy represented by the tree. A common morphological tree application pipeline consists of building the tree, computing attributes, processing the tree based on the tree structure and attributes of each node, and outputting results. Consequently, efficient attribute computation is a recurrent demand for unlocking new morphological tree applications. In this thesis, we describe our research on how to efficiently compute bit-quad counts, contours and distance transforms in morphological trees by exploiting the subset relationship encoded in trees for reuse of the attribute computation of the child nodes into their parent. First, we review how we can count bit-quads in component trees incrementally from the leaves to the root. Next, we design a novel incremental algorithm to count bit-quads in the tree of shapes. Then, we design a novel incremental method that can extract the contour of the nodes of component trees by counting the number of background neighbours of the pixels. Finally, we use our incremental contour method and Differential Image Foresting Transform to differentially compute the distance transform of component trees. We experimentally show that our differential and incremental methods are faster than non-incremental node-reconstruction approaches. We also explore the usage of morphological trees for image manipulation. In particular, we propose a novel morphological tree visualisation using icicle plots for node selection. In this visualisation, the nodes are coloured by an iso-illuminant colour map according to an attribute which aids the user in selecting the nodes. Then, the selected nodes can be manipulated using a spline-based dense medial descriptor. In summary, the thesis shows that we can compute bit-quad counts, contours, and distance transforms in morphological trees quickly by reusing the computation on the child nodes into their parent. It also discusses a software application of morphological trees for image manipulation.
id USP_e9cf44f3d84a5fd39a533a1bd2ded6ae
oai_identifier_str oai:teses.usp.br:tde-02082025-161749
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Incremental attribute computation and image manipulation using morphological treesComputação incremental de atributos e manipulação de imagens usando árvores morfológicasÁrvore de formasÁrvores de componentesÁrvores morfológicasAttribute computationComponent treesComputação de atributosImage manipulationManipulação de imagensMorphological treesTree of shapesMorphological trees are image representations that can be used in a wide range of applications from medical imaging to digital photography. Morphological trees are interesting representations because they hierarchically encode the connected components (with and without their holes filled) according to their subset relationship. In this way, we can analyse and process connected regions of the images based on the hierarchy represented by the tree. A common morphological tree application pipeline consists of building the tree, computing attributes, processing the tree based on the tree structure and attributes of each node, and outputting results. Consequently, efficient attribute computation is a recurrent demand for unlocking new morphological tree applications. In this thesis, we describe our research on how to efficiently compute bit-quad counts, contours and distance transforms in morphological trees by exploiting the subset relationship encoded in trees for reuse of the attribute computation of the child nodes into their parent. First, we review how we can count bit-quads in component trees incrementally from the leaves to the root. Next, we design a novel incremental algorithm to count bit-quads in the tree of shapes. Then, we design a novel incremental method that can extract the contour of the nodes of component trees by counting the number of background neighbours of the pixels. Finally, we use our incremental contour method and Differential Image Foresting Transform to differentially compute the distance transform of component trees. We experimentally show that our differential and incremental methods are faster than non-incremental node-reconstruction approaches. We also explore the usage of morphological trees for image manipulation. In particular, we propose a novel morphological tree visualisation using icicle plots for node selection. In this visualisation, the nodes are coloured by an iso-illuminant colour map according to an attribute which aids the user in selecting the nodes. Then, the selected nodes can be manipulated using a spline-based dense medial descriptor. In summary, the thesis shows that we can compute bit-quad counts, contours, and distance transforms in morphological trees quickly by reusing the computation on the child nodes into their parent. It also discusses a software application of morphological trees for image manipulation.Árvores morfológicas são representações de imagens que podem ser usadas em inúmeras aplicações, desde imagens médicas até fotografia digital. Árvores morfológicas são representações interessantes porque elas estruturam os componentes conexos (com e sem os buracos preenchidos) de acordo com seus relacionamentos de subconjuntos. Dessa forma, podemos analisar e processar regiões conexas das imagens baseando-se na hierarquia representada pela árvore. O pipeline comum de aplicações de árvore morfológica consiste em construir a árvore, computar atributos, processar a árvore conforme a sua estrutura e atributos de cada nó, e produzir os resultados. Consequentemente, a computação eficiente de atributos é uma demanda recorrente para novas abordagens com árvores morfológicas. Nesta tese, descrevemos nossas pesquisas em como computar eficientemente contagem de bit-quads, contorno e trasformada de distância em árvores morfológicas, explorando o relacionamento de subconjuntos codificado nas árvores para reusar a computação de atributo nos nós filhos em seus nós pais. Primeiramente, revisamos como podemos contar bit-quads em árvores de componentes incrementalmente das folhas até a raiz. Em seguida, desenvolvemos um novo algoritmo incremental para contar bit-quads na árvore de formas. Então, apresentamos um novo método incremental que pode extrair contornos dos nós de árvores de componentes contando o número de vizinhos de fundo dos pixels. Por fim, usamos nosso método incremental de extração de contorno com a transformada imagem-floresta diferencial para computar diferencialmente a transformada da distância em árvores de componentes. Mostramos experimentalmente que nossos métodos incrementais e diferenciais são mais rápidos que abordagens não-incrementais baseadas na reconstrução dos nós. Também exploramos o uso de árvores morfológicas para manipulação de imagens. Em particular, propomos a visualização de árvores morfológicas usando \\textit{icicle plots} para seleção de nós. Nesta visualização, os nós podem ser coloridos por um mapa de cor iso-iluminante de acordo com um atributo que auxilia o usuário a selecionar os nós. Então, os nós selecionados podem ser manipulados usando descritor denso medial baseado em splines. Portanto, a tese mostra que podemos computar contagem de bit-quads, contorno e transformada de distância em árvores morfológicas rapidamente, reusando a computação nos nós filhos em seus nós pais. Ela também discute uma aplicação de árvores morfológicas em manipulação de imagens.Biblioteca Digitais de Teses e Dissertações da USPHashimoto, Ronaldo FumioSilva, Dênnis José da2025-02-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-02082025-161749/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-08-04T16:54:02Zoai:teses.usp.br:tde-02082025-161749Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-08-04T16:54:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Incremental attribute computation and image manipulation using morphological trees
Computação incremental de atributos e manipulação de imagens usando árvores morfológicas
title Incremental attribute computation and image manipulation using morphological trees
spellingShingle Incremental attribute computation and image manipulation using morphological trees
Silva, Dênnis José da
Árvore de formas
Árvores de componentes
Árvores morfológicas
Attribute computation
Component trees
Computação de atributos
Image manipulation
Manipulação de imagens
Morphological trees
Tree of shapes
title_short Incremental attribute computation and image manipulation using morphological trees
title_full Incremental attribute computation and image manipulation using morphological trees
title_fullStr Incremental attribute computation and image manipulation using morphological trees
title_full_unstemmed Incremental attribute computation and image manipulation using morphological trees
title_sort Incremental attribute computation and image manipulation using morphological trees
author Silva, Dênnis José da
author_facet Silva, Dênnis José da
author_role author
dc.contributor.none.fl_str_mv Hashimoto, Ronaldo Fumio
dc.contributor.author.fl_str_mv Silva, Dênnis José da
dc.subject.por.fl_str_mv Árvore de formas
Árvores de componentes
Árvores morfológicas
Attribute computation
Component trees
Computação de atributos
Image manipulation
Manipulação de imagens
Morphological trees
Tree of shapes
topic Árvore de formas
Árvores de componentes
Árvores morfológicas
Attribute computation
Component trees
Computação de atributos
Image manipulation
Manipulação de imagens
Morphological trees
Tree of shapes
description Morphological trees are image representations that can be used in a wide range of applications from medical imaging to digital photography. Morphological trees are interesting representations because they hierarchically encode the connected components (with and without their holes filled) according to their subset relationship. In this way, we can analyse and process connected regions of the images based on the hierarchy represented by the tree. A common morphological tree application pipeline consists of building the tree, computing attributes, processing the tree based on the tree structure and attributes of each node, and outputting results. Consequently, efficient attribute computation is a recurrent demand for unlocking new morphological tree applications. In this thesis, we describe our research on how to efficiently compute bit-quad counts, contours and distance transforms in morphological trees by exploiting the subset relationship encoded in trees for reuse of the attribute computation of the child nodes into their parent. First, we review how we can count bit-quads in component trees incrementally from the leaves to the root. Next, we design a novel incremental algorithm to count bit-quads in the tree of shapes. Then, we design a novel incremental method that can extract the contour of the nodes of component trees by counting the number of background neighbours of the pixels. Finally, we use our incremental contour method and Differential Image Foresting Transform to differentially compute the distance transform of component trees. We experimentally show that our differential and incremental methods are faster than non-incremental node-reconstruction approaches. We also explore the usage of morphological trees for image manipulation. In particular, we propose a novel morphological tree visualisation using icicle plots for node selection. In this visualisation, the nodes are coloured by an iso-illuminant colour map according to an attribute which aids the user in selecting the nodes. Then, the selected nodes can be manipulated using a spline-based dense medial descriptor. In summary, the thesis shows that we can compute bit-quad counts, contours, and distance transforms in morphological trees quickly by reusing the computation on the child nodes into their parent. It also discusses a software application of morphological trees for image manipulation.
publishDate 2025
dc.date.none.fl_str_mv 2025-02-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45134/tde-02082025-161749/
url https://www.teses.usp.br/teses/disponiveis/45/45134/tde-02082025-161749/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1844786326141927424