Método de reconhecimento da marcha humana por meio da fusão das características do movimento global

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Arantes, Milene
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18152/tde-24062010-153212/
Resumo: Este trabalho propõe um novo enfoque em visão computacional aplicado a sequências de vídeo, de pessoas em movimento, para reconhecê-las por meio da marcha. O movimento humano carrega diferentes informações, considerando-se diferentes maneiras de analisá-lo. O esqueleto carrega as informações do movimento global de articulações do corpo humano e como se comportam durante a caminhada e a silhueta carreia informações referentes ao comportamento global do contorno do corpo humano. Além disso, imagens binárias e em escala de cinza possuem diferentes informações sobre o movimento humano. O método proposto considera o conjunto de frames segmentados de cada indivíduo como uma classe e cada frame como um objeto desta classe. A metodologia aplica o Modelo de Mistura de Gaussianas (GMM) para subtração de fundo, redução de escala realizada por meio de técnicas de multiresolução baseadas na Transformada Wavelet (TW) e a extração dos padrões por meio da Análise dos Componentes Principais (PCA). São propostos e ensaiados quatro novos modelos de captura de movimentos globais do corpo humano durante a marcha: o modelo Silhouette-Gray-Wavelet (SGW) captura o movimento baseado nas variações em nível de cinza; o modelo Silhouette-Binary-Wavelet (SBW) captura o movimento baseado nas informações binárias da silhueta; o modelo Silhouette-Edge-Wavelet (SEW) captura o movimento baseado nas informações contidas na borda das silhuetas e o modelo Silhouette-Skeleton-Wavelet (SSW) captura o movimento baseado do esqueleto humano. As taxas de classificações corretas obtidas separadamente a partir destes quatro diferentes modelos são então combinadas utilizando-se uma nova técnica de fusão. Os resultados demonstram excelente desempenho e mostraram a viabilidade para reconhecimento de pessoas.
id USP_ebb7c5b8c6514aa2d43b35a54f766488
oai_identifier_str oai:teses.usp.br:tde-24062010-153212
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Método de reconhecimento da marcha humana por meio da fusão das características do movimento globalRecognition method of human gait by fusion of features of the global movementAnálise da marchaBiometriaBiometryFusão de característicaFusion of characteristicsGait analysisGait recognitionGlobal motionMarcha humanaMovimento globalReconhecimento da marchaEste trabalho propõe um novo enfoque em visão computacional aplicado a sequências de vídeo, de pessoas em movimento, para reconhecê-las por meio da marcha. O movimento humano carrega diferentes informações, considerando-se diferentes maneiras de analisá-lo. O esqueleto carrega as informações do movimento global de articulações do corpo humano e como se comportam durante a caminhada e a silhueta carreia informações referentes ao comportamento global do contorno do corpo humano. Além disso, imagens binárias e em escala de cinza possuem diferentes informações sobre o movimento humano. O método proposto considera o conjunto de frames segmentados de cada indivíduo como uma classe e cada frame como um objeto desta classe. A metodologia aplica o Modelo de Mistura de Gaussianas (GMM) para subtração de fundo, redução de escala realizada por meio de técnicas de multiresolução baseadas na Transformada Wavelet (TW) e a extração dos padrões por meio da Análise dos Componentes Principais (PCA). São propostos e ensaiados quatro novos modelos de captura de movimentos globais do corpo humano durante a marcha: o modelo Silhouette-Gray-Wavelet (SGW) captura o movimento baseado nas variações em nível de cinza; o modelo Silhouette-Binary-Wavelet (SBW) captura o movimento baseado nas informações binárias da silhueta; o modelo Silhouette-Edge-Wavelet (SEW) captura o movimento baseado nas informações contidas na borda das silhuetas e o modelo Silhouette-Skeleton-Wavelet (SSW) captura o movimento baseado do esqueleto humano. As taxas de classificações corretas obtidas separadamente a partir destes quatro diferentes modelos são então combinadas utilizando-se uma nova técnica de fusão. Os resultados demonstram excelente desempenho e mostraram a viabilidade para reconhecimento de pessoas.This paper proposes a novel computer vision approach that processes video sequences of people walking and then recognises those people by their gait. Human motion carries different information that can be analysed in various ways. The skeleton carries motion information about human joints, and the silhouette carries information about boundary motion of the human body. Moreover, binary and gray-level images contain different information about human movements. Our proposed method considers the set of the segmented frames of each individual as a distinct class and each frame as an object of this class. The methodology applies background extraction using the Gaussian Mixture Model (GMM), a scale reduction based on the Wavelet Transform (WT) and feature extraction by Principal Component Analysis (PCA). We propose four new schemas for motion information capture: the Silhouette-Gray-Wavelet model (SGW) captures motion based on grey level variations; the Silhouette-Binary-Wavelet model (SBW) captures motion based on binary information; the Silhouette-Edge-Binary model (SEW) captures motion based on edge information and the Silhouette-Skeleton-Wavelet model (SSW) captures motion based on skeleton movement. The classification rates obtained separately from these four different models are then merged using a new proposed fusion technique. The results suggest excellent performance in terms of recognising people by their gait.Biblioteca Digitais de Teses e Dissertações da USPGonzaga, AdilsonArantes, Milene2010-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18152/tde-24062010-153212/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-24062010-153212Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Método de reconhecimento da marcha humana por meio da fusão das características do movimento global
Recognition method of human gait by fusion of features of the global movement
title Método de reconhecimento da marcha humana por meio da fusão das características do movimento global
spellingShingle Método de reconhecimento da marcha humana por meio da fusão das características do movimento global
Arantes, Milene
Análise da marcha
Biometria
Biometry
Fusão de característica
Fusion of characteristics
Gait analysis
Gait recognition
Global motion
Marcha humana
Movimento global
Reconhecimento da marcha
title_short Método de reconhecimento da marcha humana por meio da fusão das características do movimento global
title_full Método de reconhecimento da marcha humana por meio da fusão das características do movimento global
title_fullStr Método de reconhecimento da marcha humana por meio da fusão das características do movimento global
title_full_unstemmed Método de reconhecimento da marcha humana por meio da fusão das características do movimento global
title_sort Método de reconhecimento da marcha humana por meio da fusão das características do movimento global
author Arantes, Milene
author_facet Arantes, Milene
author_role author
dc.contributor.none.fl_str_mv Gonzaga, Adilson
dc.contributor.author.fl_str_mv Arantes, Milene
dc.subject.por.fl_str_mv Análise da marcha
Biometria
Biometry
Fusão de característica
Fusion of characteristics
Gait analysis
Gait recognition
Global motion
Marcha humana
Movimento global
Reconhecimento da marcha
topic Análise da marcha
Biometria
Biometry
Fusão de característica
Fusion of characteristics
Gait analysis
Gait recognition
Global motion
Marcha humana
Movimento global
Reconhecimento da marcha
description Este trabalho propõe um novo enfoque em visão computacional aplicado a sequências de vídeo, de pessoas em movimento, para reconhecê-las por meio da marcha. O movimento humano carrega diferentes informações, considerando-se diferentes maneiras de analisá-lo. O esqueleto carrega as informações do movimento global de articulações do corpo humano e como se comportam durante a caminhada e a silhueta carreia informações referentes ao comportamento global do contorno do corpo humano. Além disso, imagens binárias e em escala de cinza possuem diferentes informações sobre o movimento humano. O método proposto considera o conjunto de frames segmentados de cada indivíduo como uma classe e cada frame como um objeto desta classe. A metodologia aplica o Modelo de Mistura de Gaussianas (GMM) para subtração de fundo, redução de escala realizada por meio de técnicas de multiresolução baseadas na Transformada Wavelet (TW) e a extração dos padrões por meio da Análise dos Componentes Principais (PCA). São propostos e ensaiados quatro novos modelos de captura de movimentos globais do corpo humano durante a marcha: o modelo Silhouette-Gray-Wavelet (SGW) captura o movimento baseado nas variações em nível de cinza; o modelo Silhouette-Binary-Wavelet (SBW) captura o movimento baseado nas informações binárias da silhueta; o modelo Silhouette-Edge-Wavelet (SEW) captura o movimento baseado nas informações contidas na borda das silhuetas e o modelo Silhouette-Skeleton-Wavelet (SSW) captura o movimento baseado do esqueleto humano. As taxas de classificações corretas obtidas separadamente a partir destes quatro diferentes modelos são então combinadas utilizando-se uma nova técnica de fusão. Os resultados demonstram excelente desempenho e mostraram a viabilidade para reconhecimento de pessoas.
publishDate 2010
dc.date.none.fl_str_mv 2010-04-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18152/tde-24062010-153212/
url http://www.teses.usp.br/teses/disponiveis/18/18152/tde-24062010-153212/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1818279230010556416