Automatic lameness detection in sows

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Paula, Tauana Maria Carlos Guimarães de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Pig
Link de acesso: https://www.teses.usp.br/teses/disponiveis/10/10134/tde-25092024-163531/
Resumo: Lameness affects the animal′s locomotion, causing pain and discomfort and is a problem faced in pig farming with a prevalence in sows of up to 65% of animals. Observation of the animals goes unnoticed and identification of the sow\'s locomotion score is subjective as it depends on the experience of the evaluator. Computer vision systems detect sow lameness automatically, objectively, accurately and non-invasively. Locomotion has been studied using kinematics to extract complete movement data and the Fast Fourier Transform (FFT) to transform the time domain into the frequency domain. The objectives of this work were: to create a repository of images and videos of sows with different locomotion rates. Develop lateral and dorsal computer vision models to automatically identify and track key points on the sow\'s body, as well as detect different locomotion scores in sows. The video database was acquired from a commercial pig farm with the construction of a scenario for filming sows in locomotion with different lameness scores. Two cameras were used to record 2D videos. Thirteen locomotion experts evaluated the videos using the Locomotion Score System developed by Zinpro Corporation. From this annotated repository, computer models were trained and tested using the deep learning-based animal pose tracking framework SLEAP (Social LEAP Estimates Animal Poses). The best performing models were built using the LEAP architecture with 6 (lateral) and 10 (dorsal) skeletal keypoints. The architecture achieved average accuracy values of 0.90 and 0.72, average pixel distances of 6.83 and 11.37 and similarities of 0.94 and 0.86 for the lateral and dorsal views, respectively. Based on this, the kinematic study of the key points was used to develop the computer models and apply the FFT. The Naive Bayes, KNN, Random Forest and Multilayer Perceptron algorithms were tested with different methodologies and locomotion score conditions. The models that performed best in identifying sows with and without lameness were those tested with the Multilayer Perceptron algorithm. In the lateral view, the model with FFT achieved 91.5% accuracy; in the dorsal view, the model with kinematic data achieved 88.63% accuracy. Therefore, the computer models developed can be used to identify and track key points, as well as detect lameness in sows in the lateral and dorsal views with 2D images. In this way, they can contribute to the objective, precise and automatic evaluation of locomotion scores with the aim of improving the well-being, health and productivity of sows.
id USP_ec029d0019f74b10d90aee874cb63683
oai_identifier_str oai:teses.usp.br:tde-25092024-163531
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Automatic lameness detection in sowsDetecção automática de claudicação em porcasAprendizagem profundaArtificial intelligenceComputer visionDeep learningInteligência artificialLocomoçãoLocomotionPigSuínosVisão computacionalLameness affects the animal′s locomotion, causing pain and discomfort and is a problem faced in pig farming with a prevalence in sows of up to 65% of animals. Observation of the animals goes unnoticed and identification of the sow\'s locomotion score is subjective as it depends on the experience of the evaluator. Computer vision systems detect sow lameness automatically, objectively, accurately and non-invasively. Locomotion has been studied using kinematics to extract complete movement data and the Fast Fourier Transform (FFT) to transform the time domain into the frequency domain. The objectives of this work were: to create a repository of images and videos of sows with different locomotion rates. Develop lateral and dorsal computer vision models to automatically identify and track key points on the sow\'s body, as well as detect different locomotion scores in sows. The video database was acquired from a commercial pig farm with the construction of a scenario for filming sows in locomotion with different lameness scores. Two cameras were used to record 2D videos. Thirteen locomotion experts evaluated the videos using the Locomotion Score System developed by Zinpro Corporation. From this annotated repository, computer models were trained and tested using the deep learning-based animal pose tracking framework SLEAP (Social LEAP Estimates Animal Poses). The best performing models were built using the LEAP architecture with 6 (lateral) and 10 (dorsal) skeletal keypoints. The architecture achieved average accuracy values of 0.90 and 0.72, average pixel distances of 6.83 and 11.37 and similarities of 0.94 and 0.86 for the lateral and dorsal views, respectively. Based on this, the kinematic study of the key points was used to develop the computer models and apply the FFT. The Naive Bayes, KNN, Random Forest and Multilayer Perceptron algorithms were tested with different methodologies and locomotion score conditions. The models that performed best in identifying sows with and without lameness were those tested with the Multilayer Perceptron algorithm. In the lateral view, the model with FFT achieved 91.5% accuracy; in the dorsal view, the model with kinematic data achieved 88.63% accuracy. Therefore, the computer models developed can be used to identify and track key points, as well as detect lameness in sows in the lateral and dorsal views with 2D images. In this way, they can contribute to the objective, precise and automatic evaluation of locomotion scores with the aim of improving the well-being, health and productivity of sows.A claudicação afeta a locomoção do animal, causando dor e desconforto e é um problema enfrentado na suinocultura com uma prevalência em porcas de até 65% dos animais. A observação dos animais passa despercebida e a identificação do escore de locomoção da porca é subjetiva por depender da experiência do avaliador. Sistemas de visão computacional detecta de forma automática, objetiva, precisa e não invasiva a claudicação das porcas. A locomoção tem sido estudada através da cinemática por extrair dados completos do movimento e pela Transformada Rápida de Fourier (FFT) por transformar o domínio do tempo para domínio da frequência. Os objetivos deste trabalho foram: criar um repositório de imagens e vídeos de porcas com diferentes índices de locomoção. Desenvolver modelos de visão computacional lateral e dorsal para identificar e rastrear automaticamente pontos-chaves do corpo da porca, bem como detectar diferentes escores de locomoção em porcas. A base de dados de vídeo foi adquirida em uma granja comercial de suínos com a construção de cenário para filmagem de porcas em locomoção com diferentes escores de claudicação. Foram utilizadas duas câmeras para gravar vídeos 2D. Treze especialistas em locomoção avaliaram os vídeos utilizando o Locomotion Score System desenvolvido pela Zinpro Corporation. A partir deste repositório anotado, foram treinados e testados modelos computacionais utilizando a estrutura de rastreio de pose animal baseada em aprendizagem profunda SLEAP (Social LEAP Estimates Animal Poses). Os modelos com melhores desempenho foram construídos utilizando a arquitetura LEAP com 6 (lateral) e 10 (dorsal) pontos-chave do esqueleto. A arquitetura atingiu valores médios de precisão de 0,90 e 0,72, distâncias médias de 6,83 e 11,37 em pixel e semelhanças de 0,94 e 0,86 para as vistas lateral e dorsal, respetivamente. Baseado nisso, o estudo cinemático dos pontos-chave foi usado para desenvolver os modelos computacionais e aplicar a FFT. Os algoritmos Naive Bayes, KNN, Random Forest e Multilayer Perceptron foram testados com diferentes metodologias e condições de escores de locomoção. Os modelos que apresentaram melhor desempenho na identificação de porcas com e sem claudicação foram os testados com o algoritmo Multilayer Perceptron. Na vista lateral, o modelo com FFT atingiu 91,5% de acurácia; na vista dorsal, o modelo com dados cinemáticos atingiu 88,63% de acurácia. Portanto, os modelos computacionais desenvolvidos podem ser utilizados para identificar e rastrear pontos-chave, bem como detectar claudicação em porcas nas vistas lateral e dorsal com imagens 2D. Assim podendo contribuir na avaliação objetiva, precisa e automática de escore de locomoção com o intuito de melhorar o bem-estar, a saúde e a produtividade das porcas.Biblioteca Digitais de Teses e Dissertações da USPSousa, Rafael Vieira deZanella, Adroaldo JoséPaula, Tauana Maria Carlos Guimarães de2024-07-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/10/10134/tde-25092024-163531/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPReter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.info:eu-repo/semantics/openAccesseng2025-02-24T20:21:02Zoai:teses.usp.br:tde-25092024-163531Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-02-24T20:21:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Automatic lameness detection in sows
Detecção automática de claudicação em porcas
title Automatic lameness detection in sows
spellingShingle Automatic lameness detection in sows
Paula, Tauana Maria Carlos Guimarães de
Aprendizagem profunda
Artificial intelligence
Computer vision
Deep learning
Inteligência artificial
Locomoção
Locomotion
Pig
Suínos
Visão computacional
title_short Automatic lameness detection in sows
title_full Automatic lameness detection in sows
title_fullStr Automatic lameness detection in sows
title_full_unstemmed Automatic lameness detection in sows
title_sort Automatic lameness detection in sows
author Paula, Tauana Maria Carlos Guimarães de
author_facet Paula, Tauana Maria Carlos Guimarães de
author_role author
dc.contributor.none.fl_str_mv Sousa, Rafael Vieira de
Zanella, Adroaldo José
dc.contributor.author.fl_str_mv Paula, Tauana Maria Carlos Guimarães de
dc.subject.por.fl_str_mv Aprendizagem profunda
Artificial intelligence
Computer vision
Deep learning
Inteligência artificial
Locomoção
Locomotion
Pig
Suínos
Visão computacional
topic Aprendizagem profunda
Artificial intelligence
Computer vision
Deep learning
Inteligência artificial
Locomoção
Locomotion
Pig
Suínos
Visão computacional
description Lameness affects the animal′s locomotion, causing pain and discomfort and is a problem faced in pig farming with a prevalence in sows of up to 65% of animals. Observation of the animals goes unnoticed and identification of the sow\'s locomotion score is subjective as it depends on the experience of the evaluator. Computer vision systems detect sow lameness automatically, objectively, accurately and non-invasively. Locomotion has been studied using kinematics to extract complete movement data and the Fast Fourier Transform (FFT) to transform the time domain into the frequency domain. The objectives of this work were: to create a repository of images and videos of sows with different locomotion rates. Develop lateral and dorsal computer vision models to automatically identify and track key points on the sow\'s body, as well as detect different locomotion scores in sows. The video database was acquired from a commercial pig farm with the construction of a scenario for filming sows in locomotion with different lameness scores. Two cameras were used to record 2D videos. Thirteen locomotion experts evaluated the videos using the Locomotion Score System developed by Zinpro Corporation. From this annotated repository, computer models were trained and tested using the deep learning-based animal pose tracking framework SLEAP (Social LEAP Estimates Animal Poses). The best performing models were built using the LEAP architecture with 6 (lateral) and 10 (dorsal) skeletal keypoints. The architecture achieved average accuracy values of 0.90 and 0.72, average pixel distances of 6.83 and 11.37 and similarities of 0.94 and 0.86 for the lateral and dorsal views, respectively. Based on this, the kinematic study of the key points was used to develop the computer models and apply the FFT. The Naive Bayes, KNN, Random Forest and Multilayer Perceptron algorithms were tested with different methodologies and locomotion score conditions. The models that performed best in identifying sows with and without lameness were those tested with the Multilayer Perceptron algorithm. In the lateral view, the model with FFT achieved 91.5% accuracy; in the dorsal view, the model with kinematic data achieved 88.63% accuracy. Therefore, the computer models developed can be used to identify and track key points, as well as detect lameness in sows in the lateral and dorsal views with 2D images. In this way, they can contribute to the objective, precise and automatic evaluation of locomotion scores with the aim of improving the well-being, health and productivity of sows.
publishDate 2024
dc.date.none.fl_str_mv 2024-07-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/10/10134/tde-25092024-163531/
url https://www.teses.usp.br/teses/disponiveis/10/10134/tde-25092024-163531/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Reter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1839839158135160832