Modelo de inferência não linear para alocação de carteira
| Ano de defesa: | 2004 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/92/92131/tde-05042022-101739/ |
Resumo: | O objetivo desta dissertação é apresentar um modelo de inferência não linear para alocação de carteira baseado em redes neurais multicamada. A primeira parte do modelo concentra-se na predição dos retornos dos ativos. As redes neurais utilizam os preços de mercado observados para extrair informações sobre as expectativas dos participantes do mercado ou sobre a distribuição implícita dos retornos ou o mecanismo de apreçamento do mercado, tornando um poderoso modelo de predição dos retornos. Com base nos retornos esperados, a alocação das proporções de investimentos é feita por um algoritmo de otimização com controle de risco implícito. Para implementação do modelo é utilizada uma carteira contendo ações negociadas na Bolsa de Valores de São Paulo e os resultados são comparados com o tradicional modelo de média-variância elaborado por Markowitz (1952) |
| id |
USP_ecd8d1fe4d44aba5467de3e8ce5e4bdc |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-05042022-101739 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Modelo de inferência não linear para alocação de carteiraNon-linear inference model for portfolio allocationFinançasFinanceInvestimentosInvestmentsNeural NetworksRedes neuraisO objetivo desta dissertação é apresentar um modelo de inferência não linear para alocação de carteira baseado em redes neurais multicamada. A primeira parte do modelo concentra-se na predição dos retornos dos ativos. As redes neurais utilizam os preços de mercado observados para extrair informações sobre as expectativas dos participantes do mercado ou sobre a distribuição implícita dos retornos ou o mecanismo de apreçamento do mercado, tornando um poderoso modelo de predição dos retornos. Com base nos retornos esperados, a alocação das proporções de investimentos é feita por um algoritmo de otimização com controle de risco implícito. Para implementação do modelo é utilizada uma carteira contendo ações negociadas na Bolsa de Valores de São Paulo e os resultados são comparados com o tradicional modelo de média-variância elaborado por Markowitz (1952)This work proposes a non-linear inference model for optimal asset allocation based on multilayer neural networks . The first part focuses on the expected assets returns prediction model. Based on the historical market prices, the neural networks extract valuable information about the participant\'s expectation or the implicit returns distributions or even the market pricing mechanism, becoming a powerful prediction model. An optimization algorithm makes the investment proportional allocations with implicit risk control based on the expected returns. The model is implemented using a portfolio made by stocks traded at the São Paulo Stock Exchange and the results are compared against the tradicional mean-variance model written by Markowitz (1952)Biblioteca Digitais de Teses e Dissertações da USPStern, Julio MichaelGranja, Daniel de Moraes e Silva2004-06-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/92/92131/tde-05042022-101739/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-05042022-101739Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Modelo de inferência não linear para alocação de carteira Non-linear inference model for portfolio allocation |
| title |
Modelo de inferência não linear para alocação de carteira |
| spellingShingle |
Modelo de inferência não linear para alocação de carteira Granja, Daniel de Moraes e Silva Finanças Finance Investimentos Investments Neural Networks Redes neurais |
| title_short |
Modelo de inferência não linear para alocação de carteira |
| title_full |
Modelo de inferência não linear para alocação de carteira |
| title_fullStr |
Modelo de inferência não linear para alocação de carteira |
| title_full_unstemmed |
Modelo de inferência não linear para alocação de carteira |
| title_sort |
Modelo de inferência não linear para alocação de carteira |
| author |
Granja, Daniel de Moraes e Silva |
| author_facet |
Granja, Daniel de Moraes e Silva |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Stern, Julio Michael |
| dc.contributor.author.fl_str_mv |
Granja, Daniel de Moraes e Silva |
| dc.subject.por.fl_str_mv |
Finanças Finance Investimentos Investments Neural Networks Redes neurais |
| topic |
Finanças Finance Investimentos Investments Neural Networks Redes neurais |
| description |
O objetivo desta dissertação é apresentar um modelo de inferência não linear para alocação de carteira baseado em redes neurais multicamada. A primeira parte do modelo concentra-se na predição dos retornos dos ativos. As redes neurais utilizam os preços de mercado observados para extrair informações sobre as expectativas dos participantes do mercado ou sobre a distribuição implícita dos retornos ou o mecanismo de apreçamento do mercado, tornando um poderoso modelo de predição dos retornos. Com base nos retornos esperados, a alocação das proporções de investimentos é feita por um algoritmo de otimização com controle de risco implícito. Para implementação do modelo é utilizada uma carteira contendo ações negociadas na Bolsa de Valores de São Paulo e os resultados são comparados com o tradicional modelo de média-variância elaborado por Markowitz (1952) |
| publishDate |
2004 |
| dc.date.none.fl_str_mv |
2004-06-17 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/92/92131/tde-05042022-101739/ |
| url |
https://www.teses.usp.br/teses/disponiveis/92/92131/tde-05042022-101739/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1818279171464364032 |