Development of an automated theranostic platform combining magnetomotive ultrasound and magnetic hyperthermia
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/59/59135/tde-03102023-082616/ |
Resumo: | Theranostic approaches, combining diagnostic and therapeutic modalities, are gaining recognition as an innovative method to enhance the effectiveness of medical treatments. One specific technique in this field is magnetic hyperthermia (MH), which uses high-frequency magnetic fields and magnetic nanoparticles (MNPs) to target and heat cancerous cells. However, real-time tracking of temperature and MNP location during MH therapy in-vivo presents significant challenges. Magnetomotive ultrasound (MMUS) shows potential in locating MNPs; therefore, enhancing the MH process. However, a major challenge is the implementation of automated switching between the magnetic fields required for MMUS and MH using a single excitation coil. This challenge arises from the different frequency requirements, with MH operating within a 100-500 kHz range and MMUS demanding lower frequency magnetic fields (<100 Hz). Therefore, the goal of this research was to develop a theranostic platform capable of simultaneous MH and MMUS operation using a single excitation coil, enabling potential real-time usage. Overcoming this technological challenge involved the utilization of electromagnetic coupling. To generate MMUS images, a pulse generator based on a capacitor-coil discharge circuit was developed and incorporated into the theranostic platform. The integrated system employed an air-core inductor to generate magnetic field pulses up to 258 mT (2.16 kA). The induced displacements exhibited a direct correlation with temperature variation during a MH procedure. Additionally, the developed MH system achieved temperature rise of 8 °C when employing a magnetic field of 15 kA/m to heat volumes larger than 1 cm3 , indicating its potential for effective MH therapy. The results obtained during this investigation are important for understanding the optimal configurations of the theranostic platform and will guide future in vivo and in vitro studies. |
| id |
USP_ed26e85ef9b27c36899f0e38d6e4851b |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-03102023-082616 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Development of an automated theranostic platform combining magnetomotive ultrasound and magnetic hyperthermiaDesenvolvimento de uma plataforma teranóstica automatizada combinando magnetoacustografia e hipertermia magnéticaHipertermia magnéticaMagnetic hyperthermiaMagnetic nanoparticleMagnetoacoustographyMagnetoacustografiaNanopartícula magnéticaPlataforma teranósticaTheranostic platformUltrasoundUltrassomTheranostic approaches, combining diagnostic and therapeutic modalities, are gaining recognition as an innovative method to enhance the effectiveness of medical treatments. One specific technique in this field is magnetic hyperthermia (MH), which uses high-frequency magnetic fields and magnetic nanoparticles (MNPs) to target and heat cancerous cells. However, real-time tracking of temperature and MNP location during MH therapy in-vivo presents significant challenges. Magnetomotive ultrasound (MMUS) shows potential in locating MNPs; therefore, enhancing the MH process. However, a major challenge is the implementation of automated switching between the magnetic fields required for MMUS and MH using a single excitation coil. This challenge arises from the different frequency requirements, with MH operating within a 100-500 kHz range and MMUS demanding lower frequency magnetic fields (<100 Hz). Therefore, the goal of this research was to develop a theranostic platform capable of simultaneous MH and MMUS operation using a single excitation coil, enabling potential real-time usage. Overcoming this technological challenge involved the utilization of electromagnetic coupling. To generate MMUS images, a pulse generator based on a capacitor-coil discharge circuit was developed and incorporated into the theranostic platform. The integrated system employed an air-core inductor to generate magnetic field pulses up to 258 mT (2.16 kA). The induced displacements exhibited a direct correlation with temperature variation during a MH procedure. Additionally, the developed MH system achieved temperature rise of 8 °C when employing a magnetic field of 15 kA/m to heat volumes larger than 1 cm3 , indicating its potential for effective MH therapy. The results obtained during this investigation are important for understanding the optimal configurations of the theranostic platform and will guide future in vivo and in vitro studies.Abordagens teranósticas, que combinam modalidades diagnósticas e terapêuticas, estão ganhando reconhecimento como um método inovador para aumentar a eficácia de tratamentos médicos. Uma técnica específica nesse campo é a hipertermia magnética (MH), que utiliza campos magnéticos de alta frequência e nanopartículas magnéticas (MNPs) para direcionar e aquecer células cancerígenas. No entanto, o monitoramento em tempo real da temperatura e da localização de MNPs durante a terapia de MH in vivo apresenta desafios significativos. A magnetoacustografia (MMUS) tem mostrado bom potencial para localizar MNPs e, assim, aprimorar o processo de MH. No entanto, um grande desafio é a implementação da alternância automatizada entre os campos magnéticos necessários para MMUS e MH usando uma única bobina de excitação. Esse desafio surge devido aos diferentes requisitos de frequência, com MH operando na faixa de 100-500 kHz e MMUS exigindo campos magnéticos de frequência mais baixa (<100 Hz). Portanto, o objetivo desta pesquisa foi desenvolver uma plataforma teranóstica capaz de operar simultaneamente MH e MMUS usando uma única bobina de excitação, possibilitando o uso em tempo real. Superar esse desafio tecnológico envolveu a utilização de acoplamento eletromagnético. Para gerar imagens de MMUS, um gerador de pulso baseado em um circuito de descarga de capacitor-bobina foi desenvolvido e incorporado à plataforma teranóstica. O sistema integrado utilizou um indutor para gerar pulsos de campo magnético de até 258 mT (2,16 kA). Os deslocamentos induzidos exibiram uma correlação direta com a variação de temperatura durante um procedimento de MH. Além disso, o sistema de MH desenvolvido alcançou um aumento de temperatura de 8 °C ao empregar um campo magnético de 15 kA/m para aquecer volumes maiores que 1 cm3 , indicando seu potencial para uma terapia de MH eficaz. Os resultados obtidos durante esta pesquisa são importantes para compreender as configurações ideais da plataforma teranóstica e orientar estudos futuros in vivo e in vitro.Biblioteca Digitais de Teses e Dissertações da USPPavan, Théo ZeferinoMazón Valadez, Ernesto Edgar2023-07-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/59/59135/tde-03102023-082616/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-12-21T13:10:02Zoai:teses.usp.br:tde-03102023-082616Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-12-21T13:10:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Development of an automated theranostic platform combining magnetomotive ultrasound and magnetic hyperthermia Desenvolvimento de uma plataforma teranóstica automatizada combinando magnetoacustografia e hipertermia magnética |
| title |
Development of an automated theranostic platform combining magnetomotive ultrasound and magnetic hyperthermia |
| spellingShingle |
Development of an automated theranostic platform combining magnetomotive ultrasound and magnetic hyperthermia Mazón Valadez, Ernesto Edgar Hipertermia magnética Magnetic hyperthermia Magnetic nanoparticle Magnetoacoustography Magnetoacustografia Nanopartícula magnética Plataforma teranóstica Theranostic platform Ultrasound Ultrassom |
| title_short |
Development of an automated theranostic platform combining magnetomotive ultrasound and magnetic hyperthermia |
| title_full |
Development of an automated theranostic platform combining magnetomotive ultrasound and magnetic hyperthermia |
| title_fullStr |
Development of an automated theranostic platform combining magnetomotive ultrasound and magnetic hyperthermia |
| title_full_unstemmed |
Development of an automated theranostic platform combining magnetomotive ultrasound and magnetic hyperthermia |
| title_sort |
Development of an automated theranostic platform combining magnetomotive ultrasound and magnetic hyperthermia |
| author |
Mazón Valadez, Ernesto Edgar |
| author_facet |
Mazón Valadez, Ernesto Edgar |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Pavan, Théo Zeferino |
| dc.contributor.author.fl_str_mv |
Mazón Valadez, Ernesto Edgar |
| dc.subject.por.fl_str_mv |
Hipertermia magnética Magnetic hyperthermia Magnetic nanoparticle Magnetoacoustography Magnetoacustografia Nanopartícula magnética Plataforma teranóstica Theranostic platform Ultrasound Ultrassom |
| topic |
Hipertermia magnética Magnetic hyperthermia Magnetic nanoparticle Magnetoacoustography Magnetoacustografia Nanopartícula magnética Plataforma teranóstica Theranostic platform Ultrasound Ultrassom |
| description |
Theranostic approaches, combining diagnostic and therapeutic modalities, are gaining recognition as an innovative method to enhance the effectiveness of medical treatments. One specific technique in this field is magnetic hyperthermia (MH), which uses high-frequency magnetic fields and magnetic nanoparticles (MNPs) to target and heat cancerous cells. However, real-time tracking of temperature and MNP location during MH therapy in-vivo presents significant challenges. Magnetomotive ultrasound (MMUS) shows potential in locating MNPs; therefore, enhancing the MH process. However, a major challenge is the implementation of automated switching between the magnetic fields required for MMUS and MH using a single excitation coil. This challenge arises from the different frequency requirements, with MH operating within a 100-500 kHz range and MMUS demanding lower frequency magnetic fields (<100 Hz). Therefore, the goal of this research was to develop a theranostic platform capable of simultaneous MH and MMUS operation using a single excitation coil, enabling potential real-time usage. Overcoming this technological challenge involved the utilization of electromagnetic coupling. To generate MMUS images, a pulse generator based on a capacitor-coil discharge circuit was developed and incorporated into the theranostic platform. The integrated system employed an air-core inductor to generate magnetic field pulses up to 258 mT (2.16 kA). The induced displacements exhibited a direct correlation with temperature variation during a MH procedure. Additionally, the developed MH system achieved temperature rise of 8 °C when employing a magnetic field of 15 kA/m to heat volumes larger than 1 cm3 , indicating its potential for effective MH therapy. The results obtained during this investigation are important for understanding the optimal configurations of the theranostic platform and will guide future in vivo and in vitro studies. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-07-19 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/59/59135/tde-03102023-082616/ |
| url |
https://www.teses.usp.br/teses/disponiveis/59/59135/tde-03102023-082616/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257888953729024 |