Uncovering the genetic architecture of stink bug resistance and seed potential in soybean through image-based phenotyping and QTL mapping
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/11/11137/tde-05022026-155222/ |
Resumo: | Stink bugs are among the most critical factors compromising soybean productivity, causing substantial reductions in yield and seed quality. This study combined image-based phenotyping, conventional field evaluations, genotyping-by-sequencing (GBS), and QTL mapping to investigate the genetic architecture related to stink bug resistance and seed physiological potential in soybean. A population of recombinant inbred lines (RILs), derived from the cross between the resistant cultivar IAC-100 and the susceptible cultivar CD-215, was analyzed using classical manual phenotyping measures and RGB, hyperspectral, and X-ray imaging across two growing seasons (2018/2019 and 2019/2020). Advanced imaging techniques provided detailed insights into the physical, chemical, and morphological attributes of seeds, detecting subtle differences and highlighting stink bug-induced damage. The integration of image-derived data with traditional field evaluations enabled high-accuracy predictions of traits such as healthy seed weight (>90%) and stink bug tolerance (60%). Multivariate analyses revealed three main trait clusters: stink bug resistance, seed shape, and seed physiological potential. Quantitative trait loci (QTL) mapping and machine learning approaches identified significant loci associated with resistance and seed quality, distributed across 10 chromosomes, particularly on chromosomes 1, 12, and 17. Functional annotations revealed enriched pathways related to oxidative stress response and secondary metabolism, reinforcing the biological relevance of the findings. High heritability values for traits such as days to maturity (87%) and tolerance (80%) underscore the robustness of the phenotyping approach. These results demonstrate the potential of integrating high-throughput phenotyping and genomic tools to accelerate the development of elite soybean cultivars with enhanced biotic stress resistance and superior agronomic performance. Future advancements in image acquisition automation will further expand the applicability of these methods to breeding program routines. |
| id |
USP_f36843734292086aebfaec91e64227a0 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-05022026-155222 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Uncovering the genetic architecture of stink bug resistance and seed potential in soybean through image-based phenotyping and QTL mappingDesvendando a arquitetura genética da resistência a percevejos e do potencial das sementes em soja por meio de fenotipagem baseada em imagem e mapeamento de QTLsFenotipagem de alto rendimentoHigh-throughput phenotypingInsect resistanceMapeamento QTLMelhoramento de precisãoPotencial fisiológico de sementesPrecision breedingQTL mappingResistência a insetosSeeds physiological potentialStink bugs are among the most critical factors compromising soybean productivity, causing substantial reductions in yield and seed quality. This study combined image-based phenotyping, conventional field evaluations, genotyping-by-sequencing (GBS), and QTL mapping to investigate the genetic architecture related to stink bug resistance and seed physiological potential in soybean. A population of recombinant inbred lines (RILs), derived from the cross between the resistant cultivar IAC-100 and the susceptible cultivar CD-215, was analyzed using classical manual phenotyping measures and RGB, hyperspectral, and X-ray imaging across two growing seasons (2018/2019 and 2019/2020). Advanced imaging techniques provided detailed insights into the physical, chemical, and morphological attributes of seeds, detecting subtle differences and highlighting stink bug-induced damage. The integration of image-derived data with traditional field evaluations enabled high-accuracy predictions of traits such as healthy seed weight (>90%) and stink bug tolerance (60%). Multivariate analyses revealed three main trait clusters: stink bug resistance, seed shape, and seed physiological potential. Quantitative trait loci (QTL) mapping and machine learning approaches identified significant loci associated with resistance and seed quality, distributed across 10 chromosomes, particularly on chromosomes 1, 12, and 17. Functional annotations revealed enriched pathways related to oxidative stress response and secondary metabolism, reinforcing the biological relevance of the findings. High heritability values for traits such as days to maturity (87%) and tolerance (80%) underscore the robustness of the phenotyping approach. These results demonstrate the potential of integrating high-throughput phenotyping and genomic tools to accelerate the development of elite soybean cultivars with enhanced biotic stress resistance and superior agronomic performance. Future advancements in image acquisition automation will further expand the applicability of these methods to breeding program routines.Os percevejos estão entre os fatores que mais comprometem à produtividade da soja, causando reduções substanciais no rendimento e na qualidade das sementes. Este estudo combinou fenotipagem baseada em imagens, avaliações de campo convencionais, genotipagem por sequenciamento (GBS) e mapeamento QTL para investigar a arquitetura genética relacionada à resistência a percevejos e ao potencial fisiológico das sementes em soja. Uma população de linhagens recombinantes endogâmicas (RILs), derivada do cruzamento entre a cultivar resistente IAC-100 e a suscetível CD-215, foi analisada por meio de medidas manuais clássicas de fenotipagem e por imagens RGB, hiperespectrais e de raios X ao longo de duas safras agrícolas (2018/2019 e 2019/2020). Técnicas avançadas de imagem forneceram insights detalhados sobre atributos físicos, químicos e morfológicos das sementes, detectando diferenças sutis nas sementes e destacando os danos causados pelos percevejos. A integração de dados derivados de imagens com avaliações de campo tradicionais permitiu predizer com elevada precisão características como peso de sementes saudáveis (>90%) e tolerância ao ataque de percevejos (60%). Análises multivariadas revelaram três principais grupos de características: resistência a percevejos, formato das sementes e potencial fisiológico das sementes. Mapeamento de loci de características quantitativas (QTL) e abordagens de aprendizado de máquina identificaram loci significativos associados à resistência e qualidade das sementes, distribuídos em 10 cromossomos, particularmente nos cromossomos 1, 12 e 17. Anotações funcionais revelaram vias enriquecidas relacionadas à resposta ao estresse oxidativo e ao metabolismo secundário, reforçando a relevância biológica dos resultados. Elevados valores de herdabilidade para características como dias para maturação (87%) e tolerância (80%) enfatizam a robustez da abordagem de fenotipagem. Esses resultados demonstram o potencial da integração de fenotipagem de alto rendimento e ferramentas genômicas para acelerar o desenvolvimento de cultivares de soja de elite com resistência aprimorada ao estresse biótico e desempenho agronômico superior. Avanços futuros na automação de aquisição de imagens ampliarão ainda mais a aplicabilidade desses métodos às rotinas dos programas de melhoramento.Biblioteca Digitais de Teses e Dissertações da USPPinheiro, Jose BaldinBraga, Patricia2025-03-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11137/tde-05022026-155222/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2026-02-05T19:23:02Zoai:teses.usp.br:tde-05022026-155222Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212026-02-05T19:23:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Uncovering the genetic architecture of stink bug resistance and seed potential in soybean through image-based phenotyping and QTL mapping Desvendando a arquitetura genética da resistência a percevejos e do potencial das sementes em soja por meio de fenotipagem baseada em imagem e mapeamento de QTLs |
| title |
Uncovering the genetic architecture of stink bug resistance and seed potential in soybean through image-based phenotyping and QTL mapping |
| spellingShingle |
Uncovering the genetic architecture of stink bug resistance and seed potential in soybean through image-based phenotyping and QTL mapping Braga, Patricia Fenotipagem de alto rendimento High-throughput phenotyping Insect resistance Mapeamento QTL Melhoramento de precisão Potencial fisiológico de sementes Precision breeding QTL mapping Resistência a insetos Seeds physiological potential |
| title_short |
Uncovering the genetic architecture of stink bug resistance and seed potential in soybean through image-based phenotyping and QTL mapping |
| title_full |
Uncovering the genetic architecture of stink bug resistance and seed potential in soybean through image-based phenotyping and QTL mapping |
| title_fullStr |
Uncovering the genetic architecture of stink bug resistance and seed potential in soybean through image-based phenotyping and QTL mapping |
| title_full_unstemmed |
Uncovering the genetic architecture of stink bug resistance and seed potential in soybean through image-based phenotyping and QTL mapping |
| title_sort |
Uncovering the genetic architecture of stink bug resistance and seed potential in soybean through image-based phenotyping and QTL mapping |
| author |
Braga, Patricia |
| author_facet |
Braga, Patricia |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Pinheiro, Jose Baldin |
| dc.contributor.author.fl_str_mv |
Braga, Patricia |
| dc.subject.por.fl_str_mv |
Fenotipagem de alto rendimento High-throughput phenotyping Insect resistance Mapeamento QTL Melhoramento de precisão Potencial fisiológico de sementes Precision breeding QTL mapping Resistência a insetos Seeds physiological potential |
| topic |
Fenotipagem de alto rendimento High-throughput phenotyping Insect resistance Mapeamento QTL Melhoramento de precisão Potencial fisiológico de sementes Precision breeding QTL mapping Resistência a insetos Seeds physiological potential |
| description |
Stink bugs are among the most critical factors compromising soybean productivity, causing substantial reductions in yield and seed quality. This study combined image-based phenotyping, conventional field evaluations, genotyping-by-sequencing (GBS), and QTL mapping to investigate the genetic architecture related to stink bug resistance and seed physiological potential in soybean. A population of recombinant inbred lines (RILs), derived from the cross between the resistant cultivar IAC-100 and the susceptible cultivar CD-215, was analyzed using classical manual phenotyping measures and RGB, hyperspectral, and X-ray imaging across two growing seasons (2018/2019 and 2019/2020). Advanced imaging techniques provided detailed insights into the physical, chemical, and morphological attributes of seeds, detecting subtle differences and highlighting stink bug-induced damage. The integration of image-derived data with traditional field evaluations enabled high-accuracy predictions of traits such as healthy seed weight (>90%) and stink bug tolerance (60%). Multivariate analyses revealed three main trait clusters: stink bug resistance, seed shape, and seed physiological potential. Quantitative trait loci (QTL) mapping and machine learning approaches identified significant loci associated with resistance and seed quality, distributed across 10 chromosomes, particularly on chromosomes 1, 12, and 17. Functional annotations revealed enriched pathways related to oxidative stress response and secondary metabolism, reinforcing the biological relevance of the findings. High heritability values for traits such as days to maturity (87%) and tolerance (80%) underscore the robustness of the phenotyping approach. These results demonstrate the potential of integrating high-throughput phenotyping and genomic tools to accelerate the development of elite soybean cultivars with enhanced biotic stress resistance and superior agronomic performance. Future advancements in image acquisition automation will further expand the applicability of these methods to breeding program routines. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-03-07 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11137/tde-05022026-155222/ |
| url |
https://www.teses.usp.br/teses/disponiveis/11/11137/tde-05022026-155222/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1857669975236411392 |