Modelagem de um processo fermentativo por rede Perceptron multicamadas com atraso de tempo

Detalhes bibliográficos
Ano de defesa: 1996
Autor(a) principal: Manesco, Luis Fernando
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18133/tde-22012018-103016/
Resumo: A utilização de Redes Neurais Artificias para fins de identificação e controle de sistemas dinâmicos têm recebido atenção especial de muitos pesquisadores, principalmente no que se refere a sistemas não lineares. Neste trabalho é apresentado um estudo sobre a utilização de um tipo em particular de Rede Neural Artificial, uma Perceptron Multicamadas com Atraso de Tempo, na estimação de estados da etapa fermentativa do processo de Reichstein para produção de vitamina C. A aplicação de Redes Neurais Artificiais a este processo pode ser justificada pela existência de problemas associados à esta etapa, como variáveis de estado não mensuráveis e com incertezas de medida e não linearidade do processo fermentativo, além da dificuldade em se obter um modelo convencional que contemple todas as fases do processo. É estudado também a eficácia do algoritmo de Levenberg-Marquadt, na aceleração do treinamento da Rede Neural Artificial, além de uma comparação do desempenho de estimação de estados das Redes Neurais Artificiais estudadas com o filtro estendido de Kalman, baseado em um modelo não estruturado do processo fermentativo. A análise do desempenho das Redes Neurais Artificiais estudadas é avaliada em termos de uma figura de mérito baseada no erro médio quadrático sendo feitas considerações quanto ao tipo da função de ativação e o número de unidades da camada oculta. Os dados utilizados para treinamento e avaliação da Redes Neurais Artificiais foram obtidos de um conjunto de ensaios interpolados para o intervalo de amostragem desejado.
id USP_f46d08f61c8a9373fb9b3dab67b8fbaa
oai_identifier_str oai:teses.usp.br:tde-22012018-103016
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Modelagem de um processo fermentativo por rede Perceptron multicamadas com atraso de temponot availableAlgoritmo Levenberg-MarquadtArtificial neural networksIdentificação de sistemas não linearesLevenberg-Marquadt training algorithmMultilayer perceptronsNon-linear dynamic system identificationPerceptron multicamadasProcesso de ReichsteinRedes neurais artificiaisReichstein processA utilização de Redes Neurais Artificias para fins de identificação e controle de sistemas dinâmicos têm recebido atenção especial de muitos pesquisadores, principalmente no que se refere a sistemas não lineares. Neste trabalho é apresentado um estudo sobre a utilização de um tipo em particular de Rede Neural Artificial, uma Perceptron Multicamadas com Atraso de Tempo, na estimação de estados da etapa fermentativa do processo de Reichstein para produção de vitamina C. A aplicação de Redes Neurais Artificiais a este processo pode ser justificada pela existência de problemas associados à esta etapa, como variáveis de estado não mensuráveis e com incertezas de medida e não linearidade do processo fermentativo, além da dificuldade em se obter um modelo convencional que contemple todas as fases do processo. É estudado também a eficácia do algoritmo de Levenberg-Marquadt, na aceleração do treinamento da Rede Neural Artificial, além de uma comparação do desempenho de estimação de estados das Redes Neurais Artificiais estudadas com o filtro estendido de Kalman, baseado em um modelo não estruturado do processo fermentativo. A análise do desempenho das Redes Neurais Artificiais estudadas é avaliada em termos de uma figura de mérito baseada no erro médio quadrático sendo feitas considerações quanto ao tipo da função de ativação e o número de unidades da camada oculta. Os dados utilizados para treinamento e avaliação da Redes Neurais Artificiais foram obtidos de um conjunto de ensaios interpolados para o intervalo de amostragem desejado.ldentification and Control of dynamic systems using Artificial Neural Networks has been widely investigated by many researchers in the last few years, with special attention to the application of these in nonlinear systems. ls this works, a study on the utilization of a particular type of Artificial Neural Networks, a Time Delay Multi Layer Perceptron, in the state estimation of the fermentative phase of the Reichstein process of the C vitamin production. The use of Artificial Neural Networks can be justified by the presence of problems, such as uncertain and unmeasurable state variables and process non-linearity, and by the fact that a conventional model that works on all phases of the fermentative processes is very difficult to obtain. The efficiency of the Levenberg Marquadt algorithm on the acceleration of the training process is also studied. Also, a comparison is performed between the studied Artificial Neural Networks and an extended Kalman filter based on a non-structured model for this fermentative process. The analysis of lhe Artificial Neural Networks is carried out using lhe mean square errors taking into consideration lhe activation function and the number of units presents in the hidden layer. A set of batch experimental runs, interpolated to the desired time interval, is used for training and validating the Artificial Neural Networks.Biblioteca Digitais de Teses e Dissertações da USPOliveira, Vilma Alves deManesco, Luis Fernando1996-08-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18133/tde-22012018-103016/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-22012018-103016Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelagem de um processo fermentativo por rede Perceptron multicamadas com atraso de tempo
not available
title Modelagem de um processo fermentativo por rede Perceptron multicamadas com atraso de tempo
spellingShingle Modelagem de um processo fermentativo por rede Perceptron multicamadas com atraso de tempo
Manesco, Luis Fernando
Algoritmo Levenberg-Marquadt
Artificial neural networks
Identificação de sistemas não lineares
Levenberg-Marquadt training algorithm
Multilayer perceptrons
Non-linear dynamic system identification
Perceptron multicamadas
Processo de Reichstein
Redes neurais artificiais
Reichstein process
title_short Modelagem de um processo fermentativo por rede Perceptron multicamadas com atraso de tempo
title_full Modelagem de um processo fermentativo por rede Perceptron multicamadas com atraso de tempo
title_fullStr Modelagem de um processo fermentativo por rede Perceptron multicamadas com atraso de tempo
title_full_unstemmed Modelagem de um processo fermentativo por rede Perceptron multicamadas com atraso de tempo
title_sort Modelagem de um processo fermentativo por rede Perceptron multicamadas com atraso de tempo
author Manesco, Luis Fernando
author_facet Manesco, Luis Fernando
author_role author
dc.contributor.none.fl_str_mv Oliveira, Vilma Alves de
dc.contributor.author.fl_str_mv Manesco, Luis Fernando
dc.subject.por.fl_str_mv Algoritmo Levenberg-Marquadt
Artificial neural networks
Identificação de sistemas não lineares
Levenberg-Marquadt training algorithm
Multilayer perceptrons
Non-linear dynamic system identification
Perceptron multicamadas
Processo de Reichstein
Redes neurais artificiais
Reichstein process
topic Algoritmo Levenberg-Marquadt
Artificial neural networks
Identificação de sistemas não lineares
Levenberg-Marquadt training algorithm
Multilayer perceptrons
Non-linear dynamic system identification
Perceptron multicamadas
Processo de Reichstein
Redes neurais artificiais
Reichstein process
description A utilização de Redes Neurais Artificias para fins de identificação e controle de sistemas dinâmicos têm recebido atenção especial de muitos pesquisadores, principalmente no que se refere a sistemas não lineares. Neste trabalho é apresentado um estudo sobre a utilização de um tipo em particular de Rede Neural Artificial, uma Perceptron Multicamadas com Atraso de Tempo, na estimação de estados da etapa fermentativa do processo de Reichstein para produção de vitamina C. A aplicação de Redes Neurais Artificiais a este processo pode ser justificada pela existência de problemas associados à esta etapa, como variáveis de estado não mensuráveis e com incertezas de medida e não linearidade do processo fermentativo, além da dificuldade em se obter um modelo convencional que contemple todas as fases do processo. É estudado também a eficácia do algoritmo de Levenberg-Marquadt, na aceleração do treinamento da Rede Neural Artificial, além de uma comparação do desempenho de estimação de estados das Redes Neurais Artificiais estudadas com o filtro estendido de Kalman, baseado em um modelo não estruturado do processo fermentativo. A análise do desempenho das Redes Neurais Artificiais estudadas é avaliada em termos de uma figura de mérito baseada no erro médio quadrático sendo feitas considerações quanto ao tipo da função de ativação e o número de unidades da camada oculta. Os dados utilizados para treinamento e avaliação da Redes Neurais Artificiais foram obtidos de um conjunto de ensaios interpolados para o intervalo de amostragem desejado.
publishDate 1996
dc.date.none.fl_str_mv 1996-08-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18133/tde-22012018-103016/
url http://www.teses.usp.br/teses/disponiveis/18/18133/tde-22012018-103016/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258376338145280