Subvariedades de ângulo constante em 3-variedades homogêneas
| Ano de defesa: | 2015 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082015-162322/ |
Resumo: | Um resultado clássico enunciado por M.A. Lancret em 1802 e provado por B. de Saint Venant em 1845 é: uma condição necessária e suficiente para que uma curva forme um ângulo constante com respeito a um campo de Killing unitário de R3 é que a razão entre a curvatura e a torção seja constante. Curvas deste tipo são chamadas hélices generalizadas. O problema de Lancret-de Saint Venant foi generalizado para curvas em outras variedades de dimensão três como, por exemplo, as formas espaciais e os grupos de Lie. Outra maneira de generalizar o estudo anterior é passar de curvas para superfícies, ou seja estudar as superfícies orientadas de 3-variedades Riemannianas cuja normal unitária faz um ângulo constante com certos campos de vetores privilegiados do espaço ambiente. Nesta dissertação estudaremos os resultados obtidos em [16, 24, 26, 27] sobre a classificação de curvas e superfícies de ângulo constante nas seguintes 3-variedades homogêneas: R3, o grupo de Heisenberg tridimensional e as esferas de Berger. |
| id |
USP_f487e80a56b084a4ce7eded56b889e08 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-11082015-162322 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Subvariedades de ângulo constante em 3-variedades homogêneasConstant angle submanifolds in homogeneous 3-manifoldsConstant angle surfacesHomogeneous 3-manifoldsSuperfícies de ângulo constanteVariedades homogêneasUm resultado clássico enunciado por M.A. Lancret em 1802 e provado por B. de Saint Venant em 1845 é: uma condição necessária e suficiente para que uma curva forme um ângulo constante com respeito a um campo de Killing unitário de R3 é que a razão entre a curvatura e a torção seja constante. Curvas deste tipo são chamadas hélices generalizadas. O problema de Lancret-de Saint Venant foi generalizado para curvas em outras variedades de dimensão três como, por exemplo, as formas espaciais e os grupos de Lie. Outra maneira de generalizar o estudo anterior é passar de curvas para superfícies, ou seja estudar as superfícies orientadas de 3-variedades Riemannianas cuja normal unitária faz um ângulo constante com certos campos de vetores privilegiados do espaço ambiente. Nesta dissertação estudaremos os resultados obtidos em [16, 24, 26, 27] sobre a classificação de curvas e superfícies de ângulo constante nas seguintes 3-variedades homogêneas: R3, o grupo de Heisenberg tridimensional e as esferas de Berger.A classical result stated by M.A. Lancret in 1802 and first proved by B. de Saint Venant in 1845 is: a necessary and sufficient condition in order to a curve makes a constant angle with respect a unit Killing vector field of R3 is that the ratio of curvature to torsion be constant. Such curves are called general helix. The problem of Lancret-de Saint Venant has been generalized to curves in other three-dimensional manifolds as, for example, the space forms and the Lie groups. Another way to generalize the previous study is to pass from curves to surfaces, i.e. to study the oriented surfaces of Riemannian 3-manifolds for which the unit normal makes a constant angle with favored vector fields of the ambient space. In this dissertation we will study the results obtained in [16, 24, 26, 27] about the classification of constant angle curves and surfaces in the following homogeneous 3-manifolds: R3, the three-dimensional Heisenberg group and the Berger sphere.Biblioteca Digitais de Teses e Dissertações da USPOnnis, Irene IgnaziaTeixeira, Aline de Moraes2015-03-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082015-162322/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:57Zoai:teses.usp.br:tde-11082015-162322Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Subvariedades de ângulo constante em 3-variedades homogêneas Constant angle submanifolds in homogeneous 3-manifolds |
| title |
Subvariedades de ângulo constante em 3-variedades homogêneas |
| spellingShingle |
Subvariedades de ângulo constante em 3-variedades homogêneas Teixeira, Aline de Moraes Constant angle surfaces Homogeneous 3-manifolds Superfícies de ângulo constante Variedades homogêneas |
| title_short |
Subvariedades de ângulo constante em 3-variedades homogêneas |
| title_full |
Subvariedades de ângulo constante em 3-variedades homogêneas |
| title_fullStr |
Subvariedades de ângulo constante em 3-variedades homogêneas |
| title_full_unstemmed |
Subvariedades de ângulo constante em 3-variedades homogêneas |
| title_sort |
Subvariedades de ângulo constante em 3-variedades homogêneas |
| author |
Teixeira, Aline de Moraes |
| author_facet |
Teixeira, Aline de Moraes |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Onnis, Irene Ignazia |
| dc.contributor.author.fl_str_mv |
Teixeira, Aline de Moraes |
| dc.subject.por.fl_str_mv |
Constant angle surfaces Homogeneous 3-manifolds Superfícies de ângulo constante Variedades homogêneas |
| topic |
Constant angle surfaces Homogeneous 3-manifolds Superfícies de ângulo constante Variedades homogêneas |
| description |
Um resultado clássico enunciado por M.A. Lancret em 1802 e provado por B. de Saint Venant em 1845 é: uma condição necessária e suficiente para que uma curva forme um ângulo constante com respeito a um campo de Killing unitário de R3 é que a razão entre a curvatura e a torção seja constante. Curvas deste tipo são chamadas hélices generalizadas. O problema de Lancret-de Saint Venant foi generalizado para curvas em outras variedades de dimensão três como, por exemplo, as formas espaciais e os grupos de Lie. Outra maneira de generalizar o estudo anterior é passar de curvas para superfícies, ou seja estudar as superfícies orientadas de 3-variedades Riemannianas cuja normal unitária faz um ângulo constante com certos campos de vetores privilegiados do espaço ambiente. Nesta dissertação estudaremos os resultados obtidos em [16, 24, 26, 27] sobre a classificação de curvas e superfícies de ângulo constante nas seguintes 3-variedades homogêneas: R3, o grupo de Heisenberg tridimensional e as esferas de Berger. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-03-23 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082015-162322/ |
| url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11082015-162322/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258036390854656 |