Desenvolvimento de uma Técnica para Estender um SGBD Relacional com Consultas por Similaridade
| Ano de defesa: | 2019 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-04022020-111451/ |
Resumo: | Os Sistemas de Gerenciamento de Bases de Dados (SGBD) baseados na Teoria Relacional foram desenvolvidos para atender às necessidades do armazenamento e recuperação de grandes volumes de dados. Esses dados são representados por valores numéricos, datas e/ou pequenas cadeias de caracteres, e são chamados genericamente dados escalares. Com a evolução da tecnologia da informação, torna-se cada vez mais necessário organizar, armazenar e recuperar também outros tipos de dados, a que neste trabalho chamamos de dados complexos, tais como imagens, vídeo, séries temporais e sequências genéticas. As comparações baseadas em Relações de Identidade (RI) ou em Relações de Ordem (RO) são úteis para consultas sobre dados escalares, porém não são adequadas para dados complexos. Para estes, as consultas por similaridade têm sido a opção mais estudada, embora a sua disponibilidade nos SGBDs disponíveis ainda seja limitada. Métodos de Acesso Métrico (MAMs) são usualmente aplicados para a indexação de dados complexos, de modo a agilizar a execução de consultas por similaridade. O presente trabalho de mestrado visou incorporar recursos de um MAM a um SGBD Relacional. Isso foi feito por meio da proposta e implementação de uma técnica para estender um SGBD Relacional de grande utilização. Assim, implementou-se o MAM conhecido como Slim-Tree no PostgreSQL, que é um SGBD Relacional. A implementação da técnica resultou no RAFIKI, um protótipo capaz de superar a sua antecessora KIARA em termos de velocidade, quando usado para realizar consultas por similaridade. A análise experimental realizada mostrou que o RAFIKI é até 6 vezes mais rápido que a KIARA. Utilizando a técnica proposta, é possível a extensão do PostgreSQL para dar suporte a outros MAMs. |
| id |
USP_f67c87e9ad2ea7fc02be53d73070e03a |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-04022020-111451 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Desenvolvimento de uma Técnica para Estender um SGBD Relacional com Consultas por Similaridade Development of a Technique for Extending a Relational DBMS with Similarity QueriesEstruturas de indexaçãoIndexing structuresMétodos de acesso métricoMetric access methodPostgreSQLPostgreSQLRelational database management systemSistemas de gerenciamento de base de dadosSlim-treeSlim-treeOs Sistemas de Gerenciamento de Bases de Dados (SGBD) baseados na Teoria Relacional foram desenvolvidos para atender às necessidades do armazenamento e recuperação de grandes volumes de dados. Esses dados são representados por valores numéricos, datas e/ou pequenas cadeias de caracteres, e são chamados genericamente dados escalares. Com a evolução da tecnologia da informação, torna-se cada vez mais necessário organizar, armazenar e recuperar também outros tipos de dados, a que neste trabalho chamamos de dados complexos, tais como imagens, vídeo, séries temporais e sequências genéticas. As comparações baseadas em Relações de Identidade (RI) ou em Relações de Ordem (RO) são úteis para consultas sobre dados escalares, porém não são adequadas para dados complexos. Para estes, as consultas por similaridade têm sido a opção mais estudada, embora a sua disponibilidade nos SGBDs disponíveis ainda seja limitada. Métodos de Acesso Métrico (MAMs) são usualmente aplicados para a indexação de dados complexos, de modo a agilizar a execução de consultas por similaridade. O presente trabalho de mestrado visou incorporar recursos de um MAM a um SGBD Relacional. Isso foi feito por meio da proposta e implementação de uma técnica para estender um SGBD Relacional de grande utilização. Assim, implementou-se o MAM conhecido como Slim-Tree no PostgreSQL, que é um SGBD Relacional. A implementação da técnica resultou no RAFIKI, um protótipo capaz de superar a sua antecessora KIARA em termos de velocidade, quando usado para realizar consultas por similaridade. A análise experimental realizada mostrou que o RAFIKI é até 6 vezes mais rápido que a KIARA. Utilizando a técnica proposta, é possível a extensão do PostgreSQL para dar suporte a outros MAMs.Database Management Systems (DBMS) based on the Relational Theory are designed to meet the needs of storing and retrieving large amounts of data. These data can be represented by numeric values, dates, and/or small strings, and are generically called scalar data. With the evolution of information technology, it is increasingly necessary to organize, store, and retrieve other types of data. In this work, we call such data complex data, such as images, videos, time series, and genetic sequences. Comparisons based on Identity Relations or Order Relations are useful for querying scalar data but are not suitable for complex data. For complex data, similarity queries have been the most studied option, although their availability in existing DBMS is still limited. Metric Access Methods (MAMs) usually are applied for indexing complex data to speed-up similarity queries. This Masters project aimed at incorporating MAM resources to a Relational DBMS, by proposing and implementing a technique for extending a widely used Relational DBMS. Thus, we implemented the existing Slim-Tree MAM into PostgreSQL, which is a Relational DBMS. This implementation resulted in RAFIKI, a prototype capable of outperforming its predecessor system KIARA, in terms of speed, in the task of performing similarity queries. The experimental analysis carried showed that RAFIKI is up to 6 times faster than KIARA. Further, using the proposed technique, it is possible to extend PostgreSQL to support other MAMs.Biblioteca Digitais de Teses e Dissertações da USPTraina Junior, CaetanoNesso Junior, Marcos Roberto2019-10-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-04022020-111451/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2020-02-04T16:20:01Zoai:teses.usp.br:tde-04022020-111451Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-02-04T16:20:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Desenvolvimento de uma Técnica para Estender um SGBD Relacional com Consultas por Similaridade Development of a Technique for Extending a Relational DBMS with Similarity Queries |
| title |
Desenvolvimento de uma Técnica para Estender um SGBD Relacional com Consultas por Similaridade |
| spellingShingle |
Desenvolvimento de uma Técnica para Estender um SGBD Relacional com Consultas por Similaridade Nesso Junior, Marcos Roberto Estruturas de indexação Indexing structures Métodos de acesso métrico Metric access method PostgreSQL PostgreSQL Relational database management system Sistemas de gerenciamento de base de dados Slim-tree Slim-tree |
| title_short |
Desenvolvimento de uma Técnica para Estender um SGBD Relacional com Consultas por Similaridade |
| title_full |
Desenvolvimento de uma Técnica para Estender um SGBD Relacional com Consultas por Similaridade |
| title_fullStr |
Desenvolvimento de uma Técnica para Estender um SGBD Relacional com Consultas por Similaridade |
| title_full_unstemmed |
Desenvolvimento de uma Técnica para Estender um SGBD Relacional com Consultas por Similaridade |
| title_sort |
Desenvolvimento de uma Técnica para Estender um SGBD Relacional com Consultas por Similaridade |
| author |
Nesso Junior, Marcos Roberto |
| author_facet |
Nesso Junior, Marcos Roberto |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Traina Junior, Caetano |
| dc.contributor.author.fl_str_mv |
Nesso Junior, Marcos Roberto |
| dc.subject.por.fl_str_mv |
Estruturas de indexação Indexing structures Métodos de acesso métrico Metric access method PostgreSQL PostgreSQL Relational database management system Sistemas de gerenciamento de base de dados Slim-tree Slim-tree |
| topic |
Estruturas de indexação Indexing structures Métodos de acesso métrico Metric access method PostgreSQL PostgreSQL Relational database management system Sistemas de gerenciamento de base de dados Slim-tree Slim-tree |
| description |
Os Sistemas de Gerenciamento de Bases de Dados (SGBD) baseados na Teoria Relacional foram desenvolvidos para atender às necessidades do armazenamento e recuperação de grandes volumes de dados. Esses dados são representados por valores numéricos, datas e/ou pequenas cadeias de caracteres, e são chamados genericamente dados escalares. Com a evolução da tecnologia da informação, torna-se cada vez mais necessário organizar, armazenar e recuperar também outros tipos de dados, a que neste trabalho chamamos de dados complexos, tais como imagens, vídeo, séries temporais e sequências genéticas. As comparações baseadas em Relações de Identidade (RI) ou em Relações de Ordem (RO) são úteis para consultas sobre dados escalares, porém não são adequadas para dados complexos. Para estes, as consultas por similaridade têm sido a opção mais estudada, embora a sua disponibilidade nos SGBDs disponíveis ainda seja limitada. Métodos de Acesso Métrico (MAMs) são usualmente aplicados para a indexação de dados complexos, de modo a agilizar a execução de consultas por similaridade. O presente trabalho de mestrado visou incorporar recursos de um MAM a um SGBD Relacional. Isso foi feito por meio da proposta e implementação de uma técnica para estender um SGBD Relacional de grande utilização. Assim, implementou-se o MAM conhecido como Slim-Tree no PostgreSQL, que é um SGBD Relacional. A implementação da técnica resultou no RAFIKI, um protótipo capaz de superar a sua antecessora KIARA em termos de velocidade, quando usado para realizar consultas por similaridade. A análise experimental realizada mostrou que o RAFIKI é até 6 vezes mais rápido que a KIARA. Utilizando a técnica proposta, é possível a extensão do PostgreSQL para dar suporte a outros MAMs. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-10-25 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-04022020-111451/ |
| url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-04022020-111451/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257844503543808 |