Computational study of the hydrodynamic stability of gaps and cavities in a subsonic compressible boundary layer

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Mathias, Marlon Sproesser
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Gap
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18161/tde-29032022-085318/
Resumo: We study the effect of small cavities, or other discontinuities, on the laminar to turbulent flow transition over a flat plate. Understanding the transition mechanism is of significant importance for the reduction of drag in an aerodynamic project, which impacts the fuel consumption of aircrafts, for example. Predicting the correct region in which the transition to turbulence occurs is still a challenge, especially when accounting for parameters such as surface imperfections or manufacturing tolerances. Ideally, aircraft designers would balance the costs of manufacturing smoother surfaces with their aerodynamic benefits. We use two different computational tools in this work. First, a Direct Numerical Simulation (DNS) code is used to simulate the flow, either just by itself or in conjunction with controlled disturbances designed to model a natural transition. The second tool is a Linear Stability Theory (LST) code which can compute the linear stability modes of a given base flow, this algorithm is of the time-stepping type, for which we analyze the sources of errors and develop guidelines for obtaining optimum results. Both tools were designed to capture a wide spectrum of oscillations, even at very low amplitudes, which is essential for such modeling, as the natural transition is triggered by the interaction of multiple modes of different frequencies that are several orders of magnitude smaller than the base flow. There are many previous works that study either the natural transition on a flat plate or the flow disturbances caused by discontinuities on the surface, but the interaction between those two phenomena is still open for investigation. We study two different scenarios: when the cavity is much larger than the incoming boundary layer; and when they are of comparable magnitudes. Similar conclusions are reached in both cases. Increasing the Mach number has a mostly destabilizing effect on the 2D modes of the cavity. Greater ratios between cavity size and the incoming boundary layer thickness also increase the instability. We then compare the linear stability results to non-linear simulations. We also conclude that, even though 2D modes are usually more linearly unstable, the presence of 3D modes is essential for an accurate simulation of the flow. Moreover, we compare our results to experimental works and conclude that when both 2D and 3D modes are unstable in a small open cavity, it may cause a bypass transition in the boundary layer.
id USP_f8755b50828481c6936d6590b56e058d
oai_identifier_str oai:teses.usp.br:tde-29032022-085318
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Computational study of the hydrodynamic stability of gaps and cavities in a subsonic compressible boundary layerEstudo computacional da estabilidade hidrodinâmica de cavidades em uma camada limite compressível subsônicaDirect Numerical SimulationCavidade abertaCavidade pequenaCompressible flowDirect Numerical SimulationEscoamento compressívelEstabilidade globalGapGlobal stabilityOpen CavityPacotes de ondaWave packetsWe study the effect of small cavities, or other discontinuities, on the laminar to turbulent flow transition over a flat plate. Understanding the transition mechanism is of significant importance for the reduction of drag in an aerodynamic project, which impacts the fuel consumption of aircrafts, for example. Predicting the correct region in which the transition to turbulence occurs is still a challenge, especially when accounting for parameters such as surface imperfections or manufacturing tolerances. Ideally, aircraft designers would balance the costs of manufacturing smoother surfaces with their aerodynamic benefits. We use two different computational tools in this work. First, a Direct Numerical Simulation (DNS) code is used to simulate the flow, either just by itself or in conjunction with controlled disturbances designed to model a natural transition. The second tool is a Linear Stability Theory (LST) code which can compute the linear stability modes of a given base flow, this algorithm is of the time-stepping type, for which we analyze the sources of errors and develop guidelines for obtaining optimum results. Both tools were designed to capture a wide spectrum of oscillations, even at very low amplitudes, which is essential for such modeling, as the natural transition is triggered by the interaction of multiple modes of different frequencies that are several orders of magnitude smaller than the base flow. There are many previous works that study either the natural transition on a flat plate or the flow disturbances caused by discontinuities on the surface, but the interaction between those two phenomena is still open for investigation. We study two different scenarios: when the cavity is much larger than the incoming boundary layer; and when they are of comparable magnitudes. Similar conclusions are reached in both cases. Increasing the Mach number has a mostly destabilizing effect on the 2D modes of the cavity. Greater ratios between cavity size and the incoming boundary layer thickness also increase the instability. We then compare the linear stability results to non-linear simulations. We also conclude that, even though 2D modes are usually more linearly unstable, the presence of 3D modes is essential for an accurate simulation of the flow. Moreover, we compare our results to experimental works and conclude that when both 2D and 3D modes are unstable in a small open cavity, it may cause a bypass transition in the boundary layer.Estudamos o efeito de pequenas cavidades, ou outras descontinuidades, na transição de um escoamento do regime laminar para o turbulento sobre uma placa plana. Entender o mecanismo de transição para turbulência é de grande importância para a redução de arrasto em um projeto aerodinâmico, o que impacta, por exemplo, o consumo de combustível de um avião. Prever corretamente a região da transição para turbulência ainda é um desafio, especialmente ao considerar parâmetros como imperfeições da superfície ou tolerâncias de manufatura. Idealmente, os projetistas de um avião devem balancear os custos de fabricar superfícies mais lisas com seus benefícios. Duas ferramentas computacionais são usadas. Primeiro, um código de Simulação Numérica Direta (DNS) é usado para simular e escoamento, tanto sozinho quanto somado de perturbações criadas para simular a transição natural. A segunda ferramenta é um código de estabilidade linear (LST) que calcula os modos do escoamento, este algoritmo é do tipo time-stepping e analisamos suas fontes de erros e desenvolvemos diretrizes para obtenção resultados ótimos. Ambas as ferramentas foram projetadas para capturar um amplo espectro de oscilações, mesmo com amplitudes baixas, o que é essencial para tal modelagem pois a transição natural depende da interação de múltiplos modos com diferentes frequências e de amplitudes muitas ordens de grandeza menores que o escoamento. Existem muitos trabalhos anteriores que estudam a transição natural em uma placa plana ou os distúrbios causados por descontinuidades na superfície, mas a interação entre esses dois fenômenos ainda está aberta para investigação. Estudamos dois cenários diferentes: quando a cavidade é muito maior do que a camada limite; e quando são de magnitudes comparáveis, chegando a conclusões semelhantes. O aumento do número de Mach tem um efeito geralmente desestabilizador nos modos 2D da cavidade. Razões maiores entre o tamanho da cavidade e a espessura da camada limite também aumentam a instabilidade. Em seguida, comparamos os resultados de estabilidade linear com simulações não lineares. Também concluímos que, embora os modos 2D sejam geralmente mais linearmente instáveis, a presença de modos 3D é essencial para uma simulação precisa do escoamento. Por fim, comparamos nossos resultados com trabalhos experimentais e concluímos que quando modos 2D e 3D são instáveis em uma pequena cavidade aberta, ela pode causar uma transição de by-pass na camada limite.Biblioteca Digitais de Teses e Dissertações da USPMedeiros, Marcello Augusto Faraco deMathias, Marlon Sproesser2021-12-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18161/tde-29032022-085318/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-03-30T11:59:01Zoai:teses.usp.br:tde-29032022-085318Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-03-30T11:59:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Computational study of the hydrodynamic stability of gaps and cavities in a subsonic compressible boundary layer
Estudo computacional da estabilidade hidrodinâmica de cavidades em uma camada limite compressível subsônica
title Computational study of the hydrodynamic stability of gaps and cavities in a subsonic compressible boundary layer
spellingShingle Computational study of the hydrodynamic stability of gaps and cavities in a subsonic compressible boundary layer
Mathias, Marlon Sproesser
Direct Numerical Simulation
Cavidade aberta
Cavidade pequena
Compressible flow
Direct Numerical Simulation
Escoamento compressível
Estabilidade global
Gap
Global stability
Open Cavity
Pacotes de onda
Wave packets
title_short Computational study of the hydrodynamic stability of gaps and cavities in a subsonic compressible boundary layer
title_full Computational study of the hydrodynamic stability of gaps and cavities in a subsonic compressible boundary layer
title_fullStr Computational study of the hydrodynamic stability of gaps and cavities in a subsonic compressible boundary layer
title_full_unstemmed Computational study of the hydrodynamic stability of gaps and cavities in a subsonic compressible boundary layer
title_sort Computational study of the hydrodynamic stability of gaps and cavities in a subsonic compressible boundary layer
author Mathias, Marlon Sproesser
author_facet Mathias, Marlon Sproesser
author_role author
dc.contributor.none.fl_str_mv Medeiros, Marcello Augusto Faraco de
dc.contributor.author.fl_str_mv Mathias, Marlon Sproesser
dc.subject.por.fl_str_mv Direct Numerical Simulation
Cavidade aberta
Cavidade pequena
Compressible flow
Direct Numerical Simulation
Escoamento compressível
Estabilidade global
Gap
Global stability
Open Cavity
Pacotes de onda
Wave packets
topic Direct Numerical Simulation
Cavidade aberta
Cavidade pequena
Compressible flow
Direct Numerical Simulation
Escoamento compressível
Estabilidade global
Gap
Global stability
Open Cavity
Pacotes de onda
Wave packets
description We study the effect of small cavities, or other discontinuities, on the laminar to turbulent flow transition over a flat plate. Understanding the transition mechanism is of significant importance for the reduction of drag in an aerodynamic project, which impacts the fuel consumption of aircrafts, for example. Predicting the correct region in which the transition to turbulence occurs is still a challenge, especially when accounting for parameters such as surface imperfections or manufacturing tolerances. Ideally, aircraft designers would balance the costs of manufacturing smoother surfaces with their aerodynamic benefits. We use two different computational tools in this work. First, a Direct Numerical Simulation (DNS) code is used to simulate the flow, either just by itself or in conjunction with controlled disturbances designed to model a natural transition. The second tool is a Linear Stability Theory (LST) code which can compute the linear stability modes of a given base flow, this algorithm is of the time-stepping type, for which we analyze the sources of errors and develop guidelines for obtaining optimum results. Both tools were designed to capture a wide spectrum of oscillations, even at very low amplitudes, which is essential for such modeling, as the natural transition is triggered by the interaction of multiple modes of different frequencies that are several orders of magnitude smaller than the base flow. There are many previous works that study either the natural transition on a flat plate or the flow disturbances caused by discontinuities on the surface, but the interaction between those two phenomena is still open for investigation. We study two different scenarios: when the cavity is much larger than the incoming boundary layer; and when they are of comparable magnitudes. Similar conclusions are reached in both cases. Increasing the Mach number has a mostly destabilizing effect on the 2D modes of the cavity. Greater ratios between cavity size and the incoming boundary layer thickness also increase the instability. We then compare the linear stability results to non-linear simulations. We also conclude that, even though 2D modes are usually more linearly unstable, the presence of 3D modes is essential for an accurate simulation of the flow. Moreover, we compare our results to experimental works and conclude that when both 2D and 3D modes are unstable in a small open cavity, it may cause a bypass transition in the boundary layer.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18161/tde-29032022-085318/
url https://www.teses.usp.br/teses/disponiveis/18/18161/tde-29032022-085318/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258549849161728