Parallel-machine scheduling: variants, formulations, and a critical analysis of metaheuristic approaches

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Rolim, Gustavo Alencar
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18156/tde-25062025-095024/
Resumo: This thesis focuses on the study of the unrelated parallel-machine scheduling problem and its variants. In recent years, this problem has gained significant attention due to its wide range of applications, from semiconductor manufacturing to the execution of computer programs. Despite its practical importance, many of its variants are N P-hard, making the solution of large-sized instances challenging for most exact approaches. Therefore, this thesis pursues two major objectives: first, to propose new variants of the unrelated parallel-machine scheduling problem and develop fast and efficient heuristic solutions; and second, to survey and evaluate the current literature to identify the algorithmic components that lead to better metaheuristic results. To achieve these objectives, we structured this work into three stages. In the first stage, we investigated a parallel machine scheduling problem where jobs are subject to a common due window, with the goal of minimizing the total sum of weighted earliness and tardiness penalties. We identified structural properties, presented two mathematical formulations, developed two constructive heuristics, and extended the adaptive large neighborhood search metaheuristic. In the second stage, we conducted a comprehensive survey of the current literature on metaheuristics for scheduling problems with setups and makespan minimization. We analyzed neighborhood structures, solution representations, and demonstrated the advantages of using acceleration techniques. Additionally, we implemented and evaluated a set of 12 heterogeneous metaheuristics under standardized experimental conditions. Finally, in the third stage, we studied a parallel batch scheduling problem with job families and setups, aimed at minimizing the total sum of completion times. We introduced a mathematical formulation, established a dominance relationship, and proposed both a constructive heuristic and a stochastic local search algorithm with multiple neighborhood structures. We also explored the incorporation of Q-learning, a model-free reinforcement learning algorithm, for selecting neighborhood structures. Overall, we not only proposed effective algorithms that outperformed existing approaches across various benchmark instances, but also demonstrated that methods with diverse neighborhood structures and few control parameters tend to deliver superior outcomes.
id USP_f911bfaea1115a1640dff4fedae542aa
oai_identifier_str oai:teses.usp.br:tde-25062025-095024
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Parallel-machine scheduling: variants, formulations, and a critical analysis of metaheuristic approachesA programação da produção em máquinas paralelas: variantes, formulações e uma análise crítica de abordagens meta-heurísticasaprendizado por reforçoatrasos e adiantamentosearliness and tardinessmakespanmeta-heurísticasmetaheuristicsparallel-machine schedulingprogramação da produção em máquinas paralelasreinforcement learningtempo de fluxotempo total de produçãototal completion timeThis thesis focuses on the study of the unrelated parallel-machine scheduling problem and its variants. In recent years, this problem has gained significant attention due to its wide range of applications, from semiconductor manufacturing to the execution of computer programs. Despite its practical importance, many of its variants are N P-hard, making the solution of large-sized instances challenging for most exact approaches. Therefore, this thesis pursues two major objectives: first, to propose new variants of the unrelated parallel-machine scheduling problem and develop fast and efficient heuristic solutions; and second, to survey and evaluate the current literature to identify the algorithmic components that lead to better metaheuristic results. To achieve these objectives, we structured this work into three stages. In the first stage, we investigated a parallel machine scheduling problem where jobs are subject to a common due window, with the goal of minimizing the total sum of weighted earliness and tardiness penalties. We identified structural properties, presented two mathematical formulations, developed two constructive heuristics, and extended the adaptive large neighborhood search metaheuristic. In the second stage, we conducted a comprehensive survey of the current literature on metaheuristics for scheduling problems with setups and makespan minimization. We analyzed neighborhood structures, solution representations, and demonstrated the advantages of using acceleration techniques. Additionally, we implemented and evaluated a set of 12 heterogeneous metaheuristics under standardized experimental conditions. Finally, in the third stage, we studied a parallel batch scheduling problem with job families and setups, aimed at minimizing the total sum of completion times. We introduced a mathematical formulation, established a dominance relationship, and proposed both a constructive heuristic and a stochastic local search algorithm with multiple neighborhood structures. We also explored the incorporation of Q-learning, a model-free reinforcement learning algorithm, for selecting neighborhood structures. Overall, we not only proposed effective algorithms that outperformed existing approaches across various benchmark instances, but also demonstrated that methods with diverse neighborhood structures and few control parameters tend to deliver superior outcomes.Esta tese se concentra no estudo do problema de programação de máquinas paralelas não relacionadas e suas variantes. Nos últimos anos, esse problema ganhou bastante atenção devido à sua ampla gama de aplicações, desde a manufatura de semicondutores até a execução de programas de computador. Apesar de sua importância prática, muitas de suas variantes são N P - difíceis, o que torna a solução de instâncias de grande porte desafiadora para a maioria das abordagens exatas. Portanto, esta tese persegue dois objetivos principais: primeiro, propor novas variantes do problema de programação de máquinas paralelas não relacionadas e desenvolver soluções heurísticas rápidas e eficientes; e segundo, revisar e avaliar a literatura atual para identificar os componentes algorítmicos que levam a melhores resultados em metaheurísticas. Para alcançar esses objetivos, estruturamos este trabalho em três etapas. Na primeira etapa, investigamos um problema de programação de máquinas paralelas onde as tarefas estão sujeitas a uma janela de tempo comum, com o objetivo de minimizar a soma total das penalidades de adiantamento e atraso ponderadas. Identificamos propriedades estruturais, apresentamos duas formulações matemáticas, desenvolvemos duas heurísticas construtivas e estendemos a metaheurística adaptive large neighborhood search. Na segunda etapa, realizamos uma pesquisa abrangente da literatura atual sobre metaheurísticas para problemas de programação da produção em máquinas paralelas com setups e minimização do makespan. Analisamos estruturas de vizinhança, representações de soluções e demonstramos as vantagens de usar técnicas de aceleração. Além disso, implementamos e avaliamos um conjunto de 12 metaheurísticas heterogêneas em condições experimentais padronizadas. Finalmente, na terceira etapa, estudamos um problema de programação de máquinas paralelas com formação de lotes, famílias de tarefas e setups, com o objetivo de minimizar a soma total dos tempos de conclusão. Introduzimos uma formulação matemática, estabelecemos uma relação de dominância e propusemos tanto uma heurística construtiva quanto um algoritmo de busca local estocástica com várias estruturas de vizinhança. Também exploramos a incorporação do Q-learning, um algoritmo de aprendizado por reforço, para a seleção de estruturas de vizinhança. No geral, não apenas propusemos algoritmos eficazes que superaram as abordagens existentes em várias instâncias, mas também demonstramos que métodos com estruturas de vizinhança diversificadas e poucos parâmetros de controle tendem a entregar resultados melhores.Biblioteca Digitais de Teses e Dissertações da USPNagano, Marcelo SeidoRolim, Gustavo Alencar2024-11-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18156/tde-25062025-095024/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-06-26T18:46:02Zoai:teses.usp.br:tde-25062025-095024Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-06-26T18:46:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Parallel-machine scheduling: variants, formulations, and a critical analysis of metaheuristic approaches
A programação da produção em máquinas paralelas: variantes, formulações e uma análise crítica de abordagens meta-heurísticas
title Parallel-machine scheduling: variants, formulations, and a critical analysis of metaheuristic approaches
spellingShingle Parallel-machine scheduling: variants, formulations, and a critical analysis of metaheuristic approaches
Rolim, Gustavo Alencar
aprendizado por reforço
atrasos e adiantamentos
earliness and tardiness
makespan
meta-heurísticas
metaheuristics
parallel-machine scheduling
programação da produção em máquinas paralelas
reinforcement learning
tempo de fluxo
tempo total de produção
total completion time
title_short Parallel-machine scheduling: variants, formulations, and a critical analysis of metaheuristic approaches
title_full Parallel-machine scheduling: variants, formulations, and a critical analysis of metaheuristic approaches
title_fullStr Parallel-machine scheduling: variants, formulations, and a critical analysis of metaheuristic approaches
title_full_unstemmed Parallel-machine scheduling: variants, formulations, and a critical analysis of metaheuristic approaches
title_sort Parallel-machine scheduling: variants, formulations, and a critical analysis of metaheuristic approaches
author Rolim, Gustavo Alencar
author_facet Rolim, Gustavo Alencar
author_role author
dc.contributor.none.fl_str_mv Nagano, Marcelo Seido
dc.contributor.author.fl_str_mv Rolim, Gustavo Alencar
dc.subject.por.fl_str_mv aprendizado por reforço
atrasos e adiantamentos
earliness and tardiness
makespan
meta-heurísticas
metaheuristics
parallel-machine scheduling
programação da produção em máquinas paralelas
reinforcement learning
tempo de fluxo
tempo total de produção
total completion time
topic aprendizado por reforço
atrasos e adiantamentos
earliness and tardiness
makespan
meta-heurísticas
metaheuristics
parallel-machine scheduling
programação da produção em máquinas paralelas
reinforcement learning
tempo de fluxo
tempo total de produção
total completion time
description This thesis focuses on the study of the unrelated parallel-machine scheduling problem and its variants. In recent years, this problem has gained significant attention due to its wide range of applications, from semiconductor manufacturing to the execution of computer programs. Despite its practical importance, many of its variants are N P-hard, making the solution of large-sized instances challenging for most exact approaches. Therefore, this thesis pursues two major objectives: first, to propose new variants of the unrelated parallel-machine scheduling problem and develop fast and efficient heuristic solutions; and second, to survey and evaluate the current literature to identify the algorithmic components that lead to better metaheuristic results. To achieve these objectives, we structured this work into three stages. In the first stage, we investigated a parallel machine scheduling problem where jobs are subject to a common due window, with the goal of minimizing the total sum of weighted earliness and tardiness penalties. We identified structural properties, presented two mathematical formulations, developed two constructive heuristics, and extended the adaptive large neighborhood search metaheuristic. In the second stage, we conducted a comprehensive survey of the current literature on metaheuristics for scheduling problems with setups and makespan minimization. We analyzed neighborhood structures, solution representations, and demonstrated the advantages of using acceleration techniques. Additionally, we implemented and evaluated a set of 12 heterogeneous metaheuristics under standardized experimental conditions. Finally, in the third stage, we studied a parallel batch scheduling problem with job families and setups, aimed at minimizing the total sum of completion times. We introduced a mathematical formulation, established a dominance relationship, and proposed both a constructive heuristic and a stochastic local search algorithm with multiple neighborhood structures. We also explored the incorporation of Q-learning, a model-free reinforcement learning algorithm, for selecting neighborhood structures. Overall, we not only proposed effective algorithms that outperformed existing approaches across various benchmark instances, but also demonstrated that methods with diverse neighborhood structures and few control parameters tend to deliver superior outcomes.
publishDate 2024
dc.date.none.fl_str_mv 2024-11-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18156/tde-25062025-095024/
url https://www.teses.usp.br/teses/disponiveis/18/18156/tde-25062025-095024/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1844786346068017152